Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Innate Immunityarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Innate Immunity
Article
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Innate Immunity
Article . 2013
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

Retinoic acid inducible gene-I (RIG-I) signaling of hepatic stellate cells inhibits hepatitis C virus replication in hepatocytes

Authors: Li Ye; Yizhong Wang; Jieliang Li; Xu Wang; Wen-Zhe Ho; Wen-Zhe Ho; Li Song;

Retinoic acid inducible gene-I (RIG-I) signaling of hepatic stellate cells inhibits hepatitis C virus replication in hepatocytes

Abstract

Retinoic acid inducible gene-I (RIG-I) is critical in the activation of the type I IFN-dependent antiviral innate immune response to hepatitis C virus (HCV) infection. We examined whether hepatic stellate cells (HSC; LX-2) possess a functional RIG-I signaling pathway and produce antiviral factors that can inhibit HCV. We showed that LX-2 cells treated with the RIG-I ligand (5′ppp-dsRNA) expressed significantly higher levels of IFN-β and IFN-λ than the control cells. The RIG-I activation in LX-2 cells also induced the expression of Toll-like receptor 3 (TLR3) and IFN regulatory factor-7 (IRF-7), the key regulators of the IFN signaling pathway. When HCV Japanese fulminant hepatitis (JFH)-1-infected hepatocytes were co-cultured with LX-2 cells stimulated with 5′ppp-dsRNA or incubated in media conditioned with supernatant (SN) from 5′ppp-dsRNA-stimulated LX-2 cells, HCV replication in hepatocytes was suppressed significantly. This LX-2 cell action on HCV replication was mediated through both IFN-β and IFN-λ, as Abs to IFN-α/β or IFN-λ receptors could neutralize the LX-2 SN-mediated anti-HCV effect. The role of IFNs in LX-2 cell-mediated anti-HCV activity is further supported by the observation that LX-2 SN treatment induced the expression of IFN stimulated genes, 2′-5′-oligoadenylate synthase-1 (OAS-1) and myxovirus resistance A (MxA), in HCV-infected Huh7 cells. These observations highlight the importance of HSC in liver innate immunity against HCV infection via a RIG-I-mediated signaling pathway.

Related Organizations
Keywords

Myxovirus Resistance Proteins, Interferon Regulatory Factor-7, Interleukins, Hepacivirus, Interferon-beta, Hepatitis C, Coculture Techniques, Immunity, Innate, DEAD-box RNA Helicases, GTP-Binding Proteins, 2',5'-Oligoadenylate Synthetase, Hepatic Stellate Cells, Hepatocytes, DEAD Box Protein 58, Humans, Immunotherapy, Interferons, Antibodies, Blocking, Cell Line, Transformed, RNA, Double-Stranded

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    13
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
13
Average
Average
Top 10%
gold