Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The Anatomical Recor...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
The Anatomical Record
Article . 1999 . Peer-reviewed
License: Wiley TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
The Anatomical Record
Article . 1999 . Peer-reviewed
License: Wiley TDM
Data sources: Crossref
versions View all 3 versions

Submandibular gland morphogenesis: Stage-specific expression of TGF-?/EGF, IGF, TGF-?, TNF, and IL-6 signal transduction in normal embryonic mice and the phenotypic effects of TGF-?2, TGF-?3, and EGF-r null mutations

Authors: Michael Melnick; Tina Jaskoll;

Submandibular gland morphogenesis: Stage-specific expression of TGF-?/EGF, IGF, TGF-?, TNF, and IL-6 signal transduction in normal embryonic mice and the phenotypic effects of TGF-?2, TGF-?3, and EGF-r null mutations

Abstract

Branching morphogenesis of the mouse submandibular gland (SMG) is dependent on cell-cell conversations between and within epithelium and mesenchyme. Such conversations are typically mediated in other branching organs (lung, mammary glands, etc.) by hormones, growth factors, cytokines, and the like in such a way as to translate endocrine, autocrine, and paracrine signals into specific gene responses regulating cell division, apoptosis, and histodifferentiation. We report here the protein expression in embryonic SMGs of four signal transduction pathways: TGF-alpha/EGF/EGF-R; IGF-II/IGF-IR/IGF-IIR; TGF-betas and cognate receptors; TNF, IL-6, and cognate receptors. Their in vivo spatiotemporal expression is correlated with specific stages of progressive SMG development and particular patterns of cell proliferation, apoptosis, and mucin expression. Functional necessity regarding several of these pathways was assessed in mice with relevant null mutations (TGF-beta2, TGF-beta(3), EGF-R). Among many observations, the following seem of particular importance: (1) TGF-alpha and EGF-R, but not EGF, are found in the Initial and Pseudoglandular Stages of SMG development; (2) ductal and presumptive acini lumena formation was associated with apoptosis and TNF/TNF-R1 signalling; (3) TGF-beta2 and TGF-beta3 null mice have normal SMG phenotypes, suggesting the presence of other pathways of mitostasis; (4) EGF-R null mice displayed an abnormal SMG phenotype consisting of decreased branching. These and other findings provide insight into the design of future functional studies.

Related Organizations
Keywords

Male, Interleukin-6, Receptor, ErbB-2, Submandibular Gland, Gene Expression Regulation, Developmental, Apoptosis, Transforming Growth Factor alpha, ErbB Receptors, Embryonic and Fetal Development, Mice, Phenotype, Animals, Newborn, Insulin-Like Growth Factor II, Pregnancy, Mutation, Morphogenesis, Animals, Female, Fluorescent Antibody Technique, Indirect, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    144
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
144
Top 10%
Top 10%
Top 10%
bronze