Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao MGG Molecular & Gene...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
MGG Molecular & General Genetics
Article . 1993 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions

Isolation and characterization of a yeast gene that is homologous with a meiosis-specific cDNA from a plant

Authors: T, Kobayashi; Y, Hotta; S, Tabata;

Isolation and characterization of a yeast gene that is homologous with a meiosis-specific cDNA from a plant

Abstract

By using as probe a meiosis-specific cDNA clone LIM15 from the monocotyledonous plant, Lilium longiflorum, a clone containing a 2.8 kb DNA fragment was isolated from a genomic library of Saccharomyces cerevisiae. Primary structure analysis revealed that the clone includes two complete open reading frames, designated ISC2 and ISC10, capable of coding for a 36.6 kDa and a 31.6 kDa polypeptide, respectively, with the former frame being interrupted by a 92 bp intron. The predicted amino acid sequence of Isc2 was 56% identical with the putative gene product of lily cDNA clone LIM15, and showed limited sequence similarity with the yeast RAD57 gene product. Transcripts of the two genes begin accumulating 2.5 h and 7.5 h after induction of meiosis, respectively, according to a Northern hybridization analysis. Since disruption of either one of these genes had a drastic effect on the ability to form spores, ISC2 and ISC10 are expected to play significant roles in the formation of reproductive cells.

Keywords

Base Sequence, Sequence Homology, Amino Acid, Transcription, Genetic, Cell Cycle, DNA Mutational Analysis, Genes, Fungal, Molecular Sequence Data, Saccharomyces cerevisiae, Spores, Fungal, Genes, Plant, Introns, Blotting, Southern, Meiosis, Open Reading Frames, Amino Acid Sequence, RNA, Messenger, Genome, Fungal, DNA Probes, Sequence Analysis

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    50
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
50
Average
Top 10%
Top 10%