Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Hepatologyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Hepatology
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Hepatology
Article . 2008 . Peer-reviewed
License: Wiley TDM
Data sources: Crossref
Hepatology
Article . 2008 . Peer-reviewed
Data sources: Crossref
Hepatology
Article . 2008
versions View all 3 versions

Induction of incomplete autophagic response by hepatitis C virus via the unfolded protein response†

Authors: Takaji Wakita; Wen-ling Chen; Jinah Choi; Jing-hsiung James Ou; T. S.Benedict Yen; Donna Sir;

Induction of incomplete autophagic response by hepatitis C virus via the unfolded protein response†

Abstract

Autophagy is important for cellular homeostasis and can serve as innate immunity to remove intracellular pathogens. Here, we demonstrate by a battery of morphological and biochemical assays that hepatitis C virus (HCV) induces the accumulation of autophagosomes in cells without enhancing autophagic protein degradation. This induction of autophagosomes depended on the unfolded protein response (UPR), as the suppression of UPR signaling pathways suppressed HCV-induced lipidation of the microtubule-associated protein light chain 3 (LC3) protein, a necessary step for the formation of autophagosomes. The suppression of UPR or the suppression of expression of LC3 or Atg7, a protein that mediates LC3 lipidation, suppressed HCV replication, indicating a positive role of UPR and the incomplete autophagic response in HCV replication.Our studies delineate the molecular pathway by which HCV induces autophagic vacuoles and also demonstrate the perturbation of the autophagic response by HCV. These unexpected effects of HCV on the host cell likely play an important role in HCV pathogenesis.

Keywords

Protein Folding, Carcinoma, Hepatocellular, Hepatology, Liver Neoplasms, Hepacivirus, Ubiquitin-Activating Enzymes, Endoplasmic Reticulum, Transfection, Virus Replication, Autophagy-Related Protein 7, Hepatitis C, Cell Line, Tumor, Autophagy, Humans, RNA, Viral, RNA, Small Interfering, Microtubule-Associated Proteins, Plasmids, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    324
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
324
Top 1%
Top 1%
Top 1%
bronze