Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Free Radical Biology...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Free Radical Biology and Medicine
Article . 2015 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

Transforming growth factor β-interacting factor-induced malignant progression of hepatocellular carcinoma cells depends on superoxide production from Nox4

Authors: Huei Sheng Huang; Zi Miao Liu; Hong Yu Tseng; Fang Cheng Su; Hung Wen Tsai;

Transforming growth factor β-interacting factor-induced malignant progression of hepatocellular carcinoma cells depends on superoxide production from Nox4

Abstract

Hepatocellular carcinoma (HCC) is one of the most deadly malignancies worldwide because of its high recurrence rate, high metastatic potential, and resistance to drugs. Elucidation of the mechanisms underlying malignancy in HCC is needed to improve diagnosis, therapy, and prognosis. Previously, we showed that transforming growth factor β-interacting factor (TGIF) antagonizes arsenic trioxide-induced apoptosis of HepG2 cells and is associated with poor prognosis and progression of urothelial carcinoma in patients after radical nephroureterectomy. To determine whether TGIF plays a role in HCC tumorigenesis, we compared the expression of TGIF, its downstream targets, and reactive oxygen species levels between HCC HepG2 cells and the more invasive SK-Hep1 cells. Superoxide production, phosphorylation of c-Src(Y416) and AKT(S473), and expression of TGIF and NADPH oxidase (Nox) were higher in invasive SK-Hep1 cells than in HepG2 cells. TGIF-overexpressing HepG2 xenograft tumors markedly promoted tumor growth and metastasis to the lungs. Overexpression of TGIF in HepG2 cells increased superoxide production from Nox4, matrix metalloproteinase expression, invadopodia formation, and cellular migration/invasion ability. Conversely, knockdown of TGIF in SK-Hep1 cells attenuated these processes. Using gene knockdown and pharmacological inhibitors, we demonstrate that c-Src/AKT is the upstream signaling that regulates TGIF-induced Nox4 activation and subsequent superoxide production. Taken together, our results implicate TGIF as a potential biomarker for prognosis and target for clinical therapy in patients with advanced HCC.

Keywords

Homeodomain Proteins, Carcinoma, Hepatocellular, Lung Neoplasms, Liver Neoplasms, NADPH Oxidases, Hep G2 Cells, Repressor Proteins, Cell Movement, NADPH Oxidase 4, Superoxides, Humans, Neoplasm Invasiveness, Oxidation-Reduction, Proto-Oncogene Proteins c-akt, Neoplasm Transplantation, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    28
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
28
Top 10%
Top 10%
Top 10%