Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Cell Researcharrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Cell Research
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Cell Research
Article . 2007 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
Cell Research
Article . 2007
versions View all 2 versions

Shp2-mediated molecular signaling in control of embryonic stem cell self-renewal and differentiation

Authors: Gen-Sheng, Feng;

Shp2-mediated molecular signaling in control of embryonic stem cell self-renewal and differentiation

Abstract

A key issue to be addressed in stem cell biology is the molecular signaling mechanism controlling embryonic stem (ES) cell pluripotency. Stem cell properties are dictated by specific transcription factors and epigenetic processes such as DNA methylation and chromatin remodeling. Several cytokines/growth factors have been identified as critical ES cell regulators. However, there is a gap in our knowledge of the intracellular signaling pathways linking extracellular signals to transcriptional regulation in ES cells. This short review discusses the physiological role of Shp2, a cytoplasmic tyrosine phosphatase, in the molecular switch governing ES cell self-renewal versus differentiation. Shp2 promotes ES cell differentiation, mainly through bi-directional modulation of Erk and Stat3 pathways. Deletion of Shp2 in mouse ES cells results in more efficient self-renewal. This observation provides the impetus to develop Shp2 inhibitors for maintenance and amplification of ES cells in culture.

Keywords

Intracellular Signaling Peptides and Proteins, Animals, Humans, Cell Differentiation, Protein Tyrosine Phosphatase, Non-Receptor Type 11, Protein Tyrosine Phosphatases, Cell Division, Embryonic Stem Cells, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    67
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
67
Top 10%
Top 10%
Top 10%
bronze