Powered by OpenAIRE graph

Shank2E binds NaPi cotransporter at the apical membrane of proximal tubule cells

Authors: McWilliams, RR; Breusegem, SY; Brodsky, KF; Kim, E Kim, Eunjoon; Levi, M; Doctor, RB;

Shank2E binds NaPi cotransporter at the apical membrane of proximal tubule cells

Abstract

Proteins expressing postsynaptic density (PSD)-95/ Drosophila disk large (Dlg)/zonula occludens-1 (ZO-1) (PDZ) domains are commonly involved in moderating receptor, channel, and transporter activities at the plasma membrane in a variety of cell types. At the apical membrane of renal proximal tubules (PT), the type IIa NaPi cotransporter (NaPi-IIa) binds specific PDZ domain proteins. Shank2E is a spliceoform of a family of PDZ proteins that is concentrated at the apical domain of liver and pancreatic epithelial cell types and is expressed in kidney. In the present study, immunoblotting of enriched plasma membrane fractions and immunohistology found Shank2E concentrated at the brush border membrane of rat PT cells. Confocal localization of Flag-Shank2E and enhanced green fluorescent protein-NaPi-IIa in cotransfected OK cells showed these proteins colocalized in the apical microvilli of this PT cell model. Shank2E coimmunoprecipitated with NaPi-IIa from rat renal cortex tissue and HA-NaPi-IIa coprecipitated with Flag-Shank2E in cotransfected human embryonic kidney HEK cells. Domain analysis showed that the PDZ domain of Shank2E specifically bound NaPi-IIa and truncation of the COOH-terminal TRL motif from NaPi-IIa abolished this binding, and Far Western blotting showed that the Shank2E- NaPi-IIa interaction occurred directly between the two proteins. NaPi-IIa activity is regulated by moderating its abundance in the apical membrane. High-Pi conditions induce NaPi-IIa internalization and degradation. In both rat kidney PT cells and OK cells, shifting to high-Pi conditions induced an acute internal redistribution of Shank2E and, in OK cells, a significant degree of degradation. In sum, Shank2E is concentrated in the apical domain of renal PT cells, specifically binds NaPi-IIa via PDZ interactions, and undergoes Pi-induced internalization.

Keywords

Male, 571, Base Sequence, Symporters, Cell Membrane, Molecular Sequence Data, Gene Expression, Sodium-Phosphate Cotransporter Proteins, Sodium-Phosphate Cotransporter Proteins, Type IIa, Phosphates, Protein Structure, Tertiary, Rats, Kidney Tubules, Proximal, Rats, Sprague-Dawley, Animals, Protein Isoforms, Cells, Cultured, Adaptor Proteins, Signal Transducing, Protein Binding

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    27
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
27
Average
Top 10%
Top 10%