Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2004 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

STAT2 Nuclear Trafficking

Authors: Gregg P Banninger; Nancy C. Reich;
Abstract

STAT2 is a transcription factor critical to the signal transduction pathway of type I interferons (e.g. IFNalpha). STAT2 resides primarily in the cytoplasm and is tyrosine-phosphorylated after IFNalpha binds to cell surface receptors. In response to tyrosine phosphorylation STAT2 rapidly localizes to the nucleus and acquires the ability to bind specific DNA targets in association with two other proteins, STAT1 and IFN regulatory factor-9 (IRF-9). To elucidate the mechanisms that regulate cellular localization of STAT2, we investigated STAT2 nuclear trafficking both prior to tyrosine phosphorylation and after phosphorylation. Prior to phosphorylation, STAT2 is primarily resident in the cytoplasm, however, we found that it dynamically shuttles between nuclear and cytoplasmic compartments. The nuclear translocation of latent unphosphorylated STAT2 was found to be dependent on its constitutive association with IRF-9, and the export of STAT2 from the nucleus was contingent upon the function of an intrinsic nuclear export signal within the carboxyl terminus of STAT2. STAT2 export could be inhibited with leptomycin B, indicating a nuclear export signal within STAT2 is recognized by the CRM1 exportin carrier. In contrast, following tyrosine phosphorylation, STAT2 dimerizes with phosphorylated STAT1 and accumulates in the nucleus. In the absence of STAT1, STAT2 does not accumulate in the nucleus. In addition, subsequent to nuclear import of phosphorylated STAT2, it redistributes to the cytoplasm within an hour coordinate with its dephosphorylation in the nucleus. The regulation of STAT2 nuclear trafficking is distinct from the previously characterized STAT1 factor.

Related Organizations
Keywords

Cell Nucleus, Cytoplasm, Fibrosarcoma, Green Fluorescent Proteins, Nuclear Localization Signals, STAT2 Transcription Factor, Interferon-Stimulated Gene Factor 3, Karyopherins, Interferon-Stimulated Gene Factor 3, gamma Subunit, Protein Structure, Tertiary, DNA-Binding Proteins, Luminescent Proteins, Protein Transport, STAT1 Transcription Factor, Cell Line, Tumor, Trans-Activators, Humans, Interferons, Phosphorylation, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    115
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
115
Top 10%
Top 10%
Top 10%
gold