Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 1995 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

Phosphoinositide 3-Kinase Binds Constitutively to α/β-Tubulin and Binds to γ-Tubulin in Response to Insulin

Authors: R, Kapeller; A, Toker; L C, Cantley; C L, Carpenter;

Phosphoinositide 3-Kinase Binds Constitutively to α/β-Tubulin and Binds to γ-Tubulin in Response to Insulin

Abstract

Recently we reported the localization of phosphoinositide 3-kinase (PI 3-kinase) by immunofluorescence to microtubule bundles and the centrosome (Kapeller, R., Chakrabarti, R., Cantley, L., Fay, F., and Corvera, S. (1993) Mol. Cell. Biol. 13, 6052-6063). In complementary experiments we used the recombinant p85 subunit of PI 3-kinase to identify proteins that associate with phosphoinositide 3-kinase and found that phosphoinositide 3-kinase associates with alpha/beta-tubulin. The association occurs in vivo but was not significantly affected by growth factor stimulation. We localized the region of p85 that interacts with alpha/beta-tubulin to the inter-SH2 domain. These results support the immunofluorescence data and show that p85 directly associates with alpha/beta-tubulin. We then determined whether phosphoinositide 3-kinase associates with gamma-tubulin. We found a dramatic growth factor-dependent association of phosphoinositide 3-kinase with gamma-tubulin. Phosphoinositide 3-kinase associates with gamma-tubulin in response to insulin and, to a lesser extent, in response to platelet-derived growth factor. Neither epidermal growth factor nor nerve growth factor treatment of cells results in association of phosphoinositide 3-kinase and gamma-tubulin. Phosphoinositide 3-kinase is also immunoprecipitated with antibodies to pericentrin in response to insulin, indicating that phosphoinositide 3-kinase is recruited to the centrosome. Neither phosphoinositide 3-kinase activity, nor intact microtubules are necessary for the association. Treatment of cells with 0.5 M NaCl dissociates gamma-tubulin from the centrosome and disrupts the association of phosphoinositide 3-kinase with pericentrin, but not gamma-tubulin. Recombinant p85 binds to gamma-tubulin from both insulin stimulated and quiescent cells. These results suggest that the association of phosphoinositide 3-kinase with gamma-tubulin is direct. These data suggest that phosphoinositide 3-kinase may be involved in regulating microtubule responses to insulin and platelet-derived growth factor.

Related Organizations
Keywords

Centrosome, Platelet-Derived Growth Factor, Binding Sites, Blotting, Western, Molecular Sequence Data, 3T3 Cells, CHO Cells, PC12 Cells, Precipitin Tests, Rats, Mice, Phosphatidylinositol 3-Kinases, Phosphotransferases (Alcohol Group Acceptor), Cricetinae, Animals, Insulin, Amino Acid Sequence, Antigens, Microtubule-Associated Proteins, Protein Binding

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    106
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
106
Top 10%
Top 10%
Top 10%
gold