Reconstructing mutational lineages in breast cancer by multi-patient-targeted single-cell DNA sequencing
Reconstructing mutational lineages in breast cancer by multi-patient-targeted single-cell DNA sequencing
AbstractSingle cell DNA sequencing (scDNA-seq) methods are powerful tools for profiling mutations in cancer cells, however most genomic regions characterized in single cells are non-informative. To overcome this issue, we developed a Multi-Patient-Targeted (MPT) scDNA-seq sequencing method. MPT involves first performing bulk exome sequencing across a cohort of cancer patients to identify somatic mutations, which are then pooled together to develop a single custom targeted panel for high-throughput scDNA-seq using a microfluidics platform. We applied MPT to profile 330 mutations across 23,500 cells from 5 TNBC patients, which showed that 3 tumors were monoclonal and 2 tumors were polyclonal. From this data, we reconstructed mutational lineages and identified early mutational and copy number events, including early TP53 mutations that occurred in all five patients. Collectively, our data suggests that MPT can overcome technical obstacles for studying tumor evolution using scDNA-seq by profiling information-rich mutation sites.
- The University of Texas System United States
- The University of Texas MD Anderson Cancer Center United States
Technology, single-cell genomics, intratumor heterogeneity, mutational evolution, QH426-470, RC31-1245, breast cancer, triple-negative breast cancer, Genetics, Internal medicine
Technology, single-cell genomics, intratumor heterogeneity, mutational evolution, QH426-470, RC31-1245, breast cancer, triple-negative breast cancer, Genetics, Internal medicine
15 Research products, page 1 of 2
- IsRelatedTo
- IsRelatedTo
- IsRelatedTo
- IsRelatedTo
- IsRelatedTo
- IsRelatedTo
- IsRelatedTo
- IsRelatedTo
- IsRelatedTo
- IsRelatedTo
chevron_left - 1
- 2
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).20 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
