Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Oncology Reportsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Oncology Reports
Article
Data sources: UnpayWall
Oncology Reports
Article . 2014 . Peer-reviewed
Data sources: Crossref
Oncology Reports
Article . 2015
versions View all 2 versions

miR-101, downregulated in retinoblastoma, functions as a tumor suppressor in human retinoblastoma cells by targeting EZH2

Authors: Qiong, Lei; Fengmei, Shen; Jie, Wu; Weishan, Zhang; Jiahui, Wang; Lin, Zhang;

miR-101, downregulated in retinoblastoma, functions as a tumor suppressor in human retinoblastoma cells by targeting EZH2

Abstract

Accumulating evidence indicates that microRNAs are involved in multiple processes in cancer development and progression, and several miRNAs have emerged as candidate components of oncogene or tumor-suppressor networks in retinoblastoma. miR-101 has been identified as a tumor suppressor in several types of human cancer. However, the specific function of miR-101 in retinoblastoma remains unclear. In the present study, we found that the expression of miR-101 in retinoblastoma tissues was much lower than that in the normal controls. In addition, downregulation of miR-101 more frequently occurred in retinoblastoma specimens with adverse clinicopathological and histopathological features. In addition, miR-101 inhibited cell viability and progression in retinoblastoma cells by promoting cell apoptosis and arresting the cell cycle. Finally, we found that miR-101 directly inhibited EZH2 expression by targeting its 3'-UTR, and EZH2 was upregulated and inversely correlated with miR-101 expression in the retinoblastoma tissues. Thus, for the first time, we provide convincing evidence that downregulation of miR-101 is associated with tumor aggressiveness in retinoblastoma and inhibits cell growth and proliferation of retinoblastoma cells by targeting EZH2. In conclusion, all the evidence supports the tumor-suppressor role of miR-101 in human retinoblastoma.

Related Organizations
Keywords

Male, Retinal Neoplasms, Polycomb Repressive Complex 2, Retinoblastoma, Infant, Apoptosis, Cell Cycle Checkpoints, Gene Expression Regulation, Neoplastic, MicroRNAs, Cell Line, Tumor, Child, Preschool, Humans, Enhancer of Zeste Homolog 2 Protein, Female, Genes, Tumor Suppressor, Neoplasm Invasiveness, Child

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    44
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
44
Top 10%
Top 10%
Top 10%
bronze