Angiotensin II Contributes to Diabetic Renal Dysfunction in Rodents and Humans via Notch1/Snail Pathway
Angiotensin II Contributes to Diabetic Renal Dysfunction in Rodents and Humans via Notch1/Snail Pathway
In nondiabetic rat models of renal disease, angiotensin II (Ang II) perpetuates podocyte injury and promotes progression to end-stage kidney disease. Herein, we wanted to explore the role of Ang II in diabetic nephropathy by a translational approach spanning from in vitro to in vivo rat and human studies, and to dissect the intracellular pathways involved. In isolated perfused rat kidneys and in cultured human podocytes, Ang II down-regulated nephrin expression via Notch1 activation and nuclear translocation of Snail. Hairy enhancer of split-1 was a Notch1-downstream gene effector that activated Snail in cultured podocytes. In vitro changes of the Snail/nephrin axis were similar to those in renal biopsy specimens of Zucker diabetic fatty rats and patients with advanced diabetic nephropathy, and were normalized by pharmacological inhibition of the renin-angiotensin system. Collectively, the present studies provide evidence that Ang II plays a relevant role in perpetuating glomerular injury in experimental and human diabetic nephropathy via persistent activation of Notch1 and Snail signaling in podocytes, eventually resulting in down-regulation of nephrin expression, the integrity of which is crucial for the glomerular filtration barrier.
- University of Milan Italy
Male, Aged; Angiotensin II; Animals; Case-Control Studies; Cells, Cultured; Diabetes Mellitus, Type 2; Diabetic Nephropathies; Down-Regulation; Female; Humans; Immunohistochemistry; Kidney; Linear Models; Male; Membrane Proteins; Microscopy, Electron, Transmission; Middle Aged; Rats; Rats, Sprague-Dawley; Rats, Zucker; Real-Time Polymerase Chain Reaction; Receptor, Notch1; Transcription Factors; 2734, Down-Regulation, Kidney, Pathology and Forensic Medicine, Rats, Sprague-Dawley, Microscopy, Electron, Transmission, Animals, Humans, Diabetic Nephropathies, Cells, Cultured, Aged, Angiotensin II, Membrane Proteins, Middle Aged, Immunohistochemistry, Rats, Rats, Zucker, Diabetes Mellitus, Type 2, Case-Control Studies, Linear Models, Female
Male, Aged; Angiotensin II; Animals; Case-Control Studies; Cells, Cultured; Diabetes Mellitus, Type 2; Diabetic Nephropathies; Down-Regulation; Female; Humans; Immunohistochemistry; Kidney; Linear Models; Male; Membrane Proteins; Microscopy, Electron, Transmission; Middle Aged; Rats; Rats, Sprague-Dawley; Rats, Zucker; Real-Time Polymerase Chain Reaction; Receptor, Notch1; Transcription Factors; 2734, Down-Regulation, Kidney, Pathology and Forensic Medicine, Rats, Sprague-Dawley, Microscopy, Electron, Transmission, Animals, Humans, Diabetic Nephropathies, Cells, Cultured, Aged, Angiotensin II, Membrane Proteins, Middle Aged, Immunohistochemistry, Rats, Rats, Zucker, Diabetes Mellitus, Type 2, Case-Control Studies, Linear Models, Female
25 Research products, page 1 of 3
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
chevron_left - 1
- 2
- 3
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).39 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
