Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Carbohydrate Polymer...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Carbohydrate Polymers
Article . 2017 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

Microparticles prepared with 50–190 kDa chitosan as promising non-toxic carriers for pulmonary delivery of isoniazid

Authors: Paula M, Oliveira; Breno N, Matos; Priscilla A T, Pereira; Taís, Gratieri; Lucia H, Faccioli; Marcílio S S, Cunha-Filho; Guilherme M, Gelfuso;

Microparticles prepared with 50–190 kDa chitosan as promising non-toxic carriers for pulmonary delivery of isoniazid

Abstract

Chitosan biocompatibility and mucoadhesiveness make it an ideal polymer for antituberculotic drugs microcapsulation for pulmonary delivery. Yet, previous study indicated toxicity problems to J-774.1-cells treated with some medium molecular weight (190-310kDa) chitosan microparticles. As polymer molecular weight is a crucial factor to be considered, this paper describes the preparation and characterization of chitosan (50-190kDa) microparticles containing isoniazid (INH). Cytotoxicity assays were also performed on murine peritoneal (J-774.1) and alveolar (AMJ2-C11) macrophages cell lines, followed by cytokines detection from AMJ2-C11 cells. Spray-drying process produced mucoadhesive microparticles from 3.2μm to 3.9μm, entrapping more than 89% of the drug and preserving their chemical stability. Drug release behavior could be controlled by the use of cross-linked or uncross-linked chitosan, the latter leading to a rapid drug release. Mucoadhesive potential of the microparticles was characterized following in vitro and ex vivo assays. Finally, a significant reduction on toxicity against peritoneal macrophages and no toxic effect on alveolar macrophages with use of such microparticles were observed. In conclusion, 50-190kDa chitosan microparticles may act as promising non-cytotoxic carriers for pulmonary delivery of INH showing marked alveoli macrophage activation.

Keywords

Chitosan, Drug Carriers, Mice, Macrophages, Alveolar, Isoniazid, Animals, Particle Size, Microspheres, Cell Line

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    57
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
57
Top 10%
Top 10%
Top 10%