Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 1998 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

Molecular Cloning and Characterization of a Novel p70 S6 Kinase, p70 S6 Kinase β Containing a Proline-rich Region

Authors: Ivan Gout; Ivan Gout; Kenta Hara; Michael D. Waterfield; Valery Filonenko; Yosuke Tsujishita; Taichi Minami; +1 Authors

Molecular Cloning and Characterization of a Novel p70 S6 Kinase, p70 S6 Kinase β Containing a Proline-rich Region

Abstract

A novel ribosomal S6 kinase, termed p70 S6 kinase beta (p70beta), which has a highly conserved amino acid sequence compared with that of p70/p85 S6 kinase (p70alpha) within the catalytic, kinase extension, and autoinhibitory pseudosubstrate domains, was identified. However, the amino acid sequence of p70beta differs from that of p70alpha in the noncatalytic amino-terminal region and in the carboxyl-terminal tail, which contains a proline-rich region. The majority of the regulatory phosphorylation sites identified in p70alpha are conserved in p70beta. Two isoforms of p70beta, referred to as beta1 (495 amino acids) and beta2 (482 amino acids), could be expressed from the single gene either by alternative mRNA splicing or by the use of alternative start codons. Here we report the characterization of p70beta2. Similarly to p70alpha, the catalytic activity of p70beta toward ribosomal protein S6 could be rapidly activated by serum, insulin, and phorbol ester in transiently transfected cells. The p70beta kinase was found to be significantly less sensitive to wortmannin and rapamycin than p70alpha. These results indicate that p70beta has the potential to participate in the regulation of protein synthesis and the cell cycle.

Keywords

Sirolimus, Proline, Ribosomal Protein S6 Kinases, Molecular Sequence Data, CHO Cells, Blotting, Northern, Peptide Mapping, Cell Line, Androstadienes, Open Reading Frames, Catalytic Domain, Cricetinae, Animals, Humans, Amino Acid Sequence, Cloning, Molecular, Enzyme Inhibitors, Phosphorylation, Wortmannin

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    138
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
138
Top 10%
Top 1%
Top 10%
gold