Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Cellular Signallingarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Cellular Signalling
Article . 2004 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

Protein tyrosine kinase Syk modulates EGFR signalling in human mammary epithelial cells

Authors: Anja, Ruschel; Axel, Ullrich;

Protein tyrosine kinase Syk modulates EGFR signalling in human mammary epithelial cells

Abstract

Signalling through protein tyrosine kinases (PTKs) is critical in the regulation of important cellular processes and its deregulation is associated with pathophysiological disorders such as cancer. We investigated the function of the PTK spleen tyrosine kinase (Syk) in the regulation of growth factor signalling pathways in human mammary epithelial cells. Our results show that downregulation of endogenous Syk expression enhances the ligand-induced activity of the epidermal growth factor receptor (EGFR) but not that of the closely related human epidermal growth factor receptor 2 (HER2) and human epidermal growth factor receptor 3 (HER3) receptors. Moreover, Syk function interfered with EGFR-mediated cell responses such as proliferation and survival of mammary epithelial cells. A mechanistic link between Syk and EGFR is further supported by the colocalisation of the two PTKs in membrane fractions as well as the regulatory feedback effects of the EGFR kinase on Syk activity. Our findings demonstrate that Syk acts a negative control element of EGFR signalling.

Keywords

Feedback, Physiological, Enzyme Precursors, Epidermal Growth Factor, Cell Survival, Receptor, ErbB-2, Cell Membrane, Intracellular Signaling Peptides and Proteins, Down-Regulation, Epithelial Cells, Protein Serine-Threonine Kinases, Protein-Tyrosine Kinases, Cell Line, ErbB Receptors, Proto-Oncogene Proteins, Humans, Female, Extracellular Signal-Regulated MAP Kinases, Mammary Glands, Human, Proto-Oncogene Proteins c-akt, Cell Proliferation

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    28
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
28
Average
Top 10%
Top 10%
Related to Research communities
Cancer Research