Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ACS Omegaarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ACS Omega
Article
License: CC BY NC ND
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2020
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ACS Omega
Article . 2020
Data sources: DOAJ
versions View all 4 versions

Nicotinamide–Ponatinib Analogues as Potent Anti-CML and Anti-AML Compounds

Authors: Elizabeth Larocque; Elizabeth Fei Yin Chu; Nimmashetti Naganna; Herman O. Sintim;

Nicotinamide–Ponatinib Analogues as Potent Anti-CML and Anti-AML Compounds

Abstract

Ponatinib is a multikinase inhibitor that is used to treat chronic myeloid leukemia patients harboring mutated ABL1(T315I) kinase. Due to the potent inhibition of FLT3, RET, and fibroblast growth factor receptors (FGFRs), it is also being evaluated against acute myeloid leukemia (AML), biliary, and lung cancers. The multikinase inhibition profile of ponatinib may also account for its toxicity, thus analogs with improved kinase selectivity or different kinase inhibition profiles could be better tolerated. The introduction of nitrogen into drug compounds can enhance efficacy and drug properties (a concept called "necessary nitrogen"). Here, we introduce additional nitrogen into the benzamide moiety of ponatinib to arrive at nicotinamide analogs. A nicotinamide analogue of ponatinib, HSN748, retains activity against FLT3, ABL1, RET, and PDGFRα/β but loses activity against c-Src and P38α. MNK1 and 2 are key kinases that phosphorylate eIF4E to regulate the protein translation complex. MNK also modulates mTORC1 signaling and contributes to rapamycin resistance. Inhibitors of MNK1 and 2 are being evaluated for anticancer therapy. Ponatinib is not a potent inhibitor of MNK1 or 2, but the nicotinamide analogs are potent inhibitors of MNKs. This illustrates a powerful demonstration of the necessary nitrogen concept to alter both the potency and selectivity of drugs.

Keywords

Chemistry, QD1-999

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    18
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
18
Top 10%
Average
Top 10%
Green
gold