Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Biochemical and Biop...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biochemical and Biophysical Research Communications
Article . 2009 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

Gaining insight into the response logic of Saccharomyces cerevisiae to heat shock by combining expression profiles with metabolic pathways

Authors: Yanrui, Ye; Yi, Zhu; Li, Pan; Lili, Li; Xiaoning, Wang; Ying, Lin;

Gaining insight into the response logic of Saccharomyces cerevisiae to heat shock by combining expression profiles with metabolic pathways

Abstract

Extensive alteration of gene expression and metabolic remodeling enable the budding yeast Saccharomyces cerevisiae to ensure cellular homeostasis and adaptation to heat shock. The response logic of the cells to heat shock is still not entirely clear. In this study, we combined the expression profiles with metabolic pathways to investigate the logical relations between heat shock response metabolic pathways. The results showed that the heat-stressed S. cerevisiae cell accumulated trehalose and glycogen, which protect cellular proteins against denaturation, and modulate its phospholipid structure to sustain stability of the cell wall. The TCA cycle was enhanced, and the heat shock-induced turnover of amino acids and nucleotides served to meet the extra energy requirement due to heat-induced protein metabolism and modification. The enhanced respiration led to oxidative stress, and subsequently induced the aldehyde detoxification system. These results indicated that new insight into the response logic of S. cerevisiae to heat shock can be gained by integrating expression profiles and the logical relations between heat shock response metabolic pathways.

Related Organizations
Keywords

Gene Expression Profiling, Gene Expression Regulation, Fungal, Saccharomyces cerevisiae, Heat-Shock Response, Oligonucleotide Array Sequence Analysis, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    22
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
22
Average
Top 10%
Top 10%