Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Analytical Chemistryarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Analytical Chemistry
Article . 2022 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

Consensus Receptor-Binding Domain-Targeted Aptamer Selection and Designing of a Photonic Crystal-Decorated Aptasensor for SARS-CoV-2

Authors: Ghulam Murtaza; Aysha Sarfraz Rizvi; Min Xue; Lili Qiu; Zihui Meng;

Consensus Receptor-Binding Domain-Targeted Aptamer Selection and Designing of a Photonic Crystal-Decorated Aptasensor for SARS-CoV-2

Abstract

The frequent emergence of variants of concern (VOC) of SARS-CoV-2 necessitates a sensitive and all-inclusive detection platform that remains viable despite the virus mutations. In this context, we targeted the receptor-binding domain (RBD) of glycoprotein (S-protein) of all VOC and constructed a consensus RBD (cRBD) based on the conserved amino acids. Then, we selected a high-affinity ssDNA novel aptamer specific for the cRBD by an in silico approach. The selected aptamer is utilized to fabricate a photonic crystal (PC)-decorated aptasensor (APC-sensor), which consists of polystyrene nanoparticles polymerized within a polyacrylamide hydrogel. cRBD-responsive ssDNA aptamers are crosslinked in the hydrogel network, which selectively bind to the cRBD and SARS-CoV-2 in saliva samples. The binding response can be visually monitored by swelling of the hydrogel and color generation by diffraction of light from PCs and can be quantified by the diffraction ring diameter or a spectrometer. The sensor delivers a LOD of 12.7 ± 0.55 ng mL-1 for the cRBD and 3 ± 18.8 cells mL-1 for SARS-CoV-2 in saliva samples, with a rapid response of 5 min. The sensor can be stored and regenerated without loss of activity. It can be utilized as a point-of-care testing (POCT) for SARS-CoV-2 diagnosis.

Related Organizations
Keywords

COVID-19 Testing, Consensus, SARS-CoV-2, COVID-19, Humans, Hydrogels

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    33
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
33
Top 10%
Top 10%
Top 1%