Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Biochemical and Biop...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biochemical and Biophysical Research Communications
Article . 2021 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

ADAM10 and ADAM17 are degraded by lysosomal pathway via asparagine endopeptidase

Authors: Xingyu, Zhang; Li, Tang; Zhentao, Zhang;

ADAM10 and ADAM17 are degraded by lysosomal pathway via asparagine endopeptidase

Abstract

A disintegrin and metalloproteinases 10 (ADAM10) and ADAM17 are transmembrane metalloproteinases that cleave the membrane-anchored proteins. They act as α-secretase that cleaves amyloid precursor protein (APP), precluding the production of amyloid-β, thus protecting against the onset of Alzheimer's disease (AD). However, the degradation pathway of ADAM10 and ADAM17 remains unknown. In this study, we show that ADAM10 and ADAM17 are degraded through the lysosomal pathway. The lysosomal cysteine protease, AEP, plays an important role in the degradation of ADAM10/17. AEP directly cleaves ADAM10/17. Knockout of AEP increases the content of ADAM10/17 in the brain. Given the protective role of ADAM10 and ADAM17 against AD, AEP-mediated degradation of ADAM10/17 may be involved in the pathogenesis of AD.

Related Organizations
Keywords

Mice, Knockout, ADAM17 Protein, ADAM10 Protein, Cysteine Endopeptidases, Mice, HEK293 Cells, Proteolysis, Animals, Humans, Lysosomes

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    12
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
12
Top 10%
Average
Top 10%