Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Genes to Cellsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Genes to Cells
Article . 2021 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Genes to Cells
Article
License: CC BY NC ND
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2021
Data sources: PubMed Central
Genes to Cells
Article . 2021
versions View all 3 versions

G‐quadruplex‐forming nucleic acids interact with splicing factor 3B subunit 2 and suppress innate immune gene expression

Authors: Sachiko Okabe; Kenichi Ohashi; Kenichi Ohashi; Koji Ueda; Hiroyuki Seimiya; Hiroyuki Seimiya; Risa Fujii; +3 Authors

G‐quadruplex‐forming nucleic acids interact with splicing factor 3B subunit 2 and suppress innate immune gene expression

Abstract

AbstractG‐quadruplex (G4), a non‐canonical higher‐order structure formed by guanine‐rich nucleic acid sequences, affects various genetic events in cis, including replication, transcription and translation. Whereas up‐regulation of innate immune/interferon‐stimulated genes (ISGs) is implicated in cancer progression, G4‐forming oligonucleotides that mimic telomeric repeat‐containing RNA suppress ISG induction in three‐dimensional (3D) culture of cancer cells. However, it is unclear how G4 suppresses ISG expression in trans. In this study, we found that G4 binding to splicing factor 3B subunit 2 (SF3B2) down‐regulated STAT1 phosphorylation and ISG expression in 3D‐cultured cancer cells. Liquid chromatography‐tandem mass spectrometry analysis identified SF3B2 as a G4‐binding protein. Either G4‐forming oligonucleotides or SF3B2 knockdown suppressed ISG induction, whereas Phen‐DC3, a G4‐stabilizing compound, reversed the inhibitory effect of G4‐forming oligonucleotides on ISG induction. Phen‐DC3 inhibited SF3B2 binding to G4 in vitro. SF3B2‐mediated ISG induction appeared to occur independently of RNA splicing because SF3B2 knockdown did not affect pre‐mRNA splicing under the experimental conditions, and pharmacological inhibition of splicing by pladienolide B did not repress ISG induction. These observations suggest that G4 disrupts the ability of SF3B2 to induce ISGs in cancer. We propose a new mode for gene regulation, which employs G4 as an inhibitory trans‐element.

Keywords

Fused-Ring Compounds, RNA Splicing, Oligonucleotides, Original Articles, Ligands, Models, Biological, Immunity, Innate, G-Quadruplexes, Gene Ontology, STAT1 Transcription Factor, Gene Expression Regulation, Cell Line, Tumor, Gene Knockdown Techniques, Nucleic Acids, Cytokines, Humans, RNA Splicing Factors, Ubiquitins, Protein Binding, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    11
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
11
Top 10%
Average
Top 10%
Green
hybrid