Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Bloodarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Blood
Article
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Blood
Article . 2009 . Peer-reviewed
Data sources: Crossref
Blood
Article . 2009
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 5 versions

Identification of ZNF366 and PTPRD as novel determinants of plasma homocysteine in a family-based genome-wide association study

Authors: Mälarstig, A; Buil, A; Souto, J; Clarke, R; Blanco-Vaca, F; Fontcuberta, J; Peden, J; +8 Authors

Identification of ZNF366 and PTPRD as novel determinants of plasma homocysteine in a family-based genome-wide association study

Abstract

Abstract Total plasma homocysteine concentration (tHcy) is a biomarker for atherothrombotic disease, but causality remains uncertain. Polymorphisms in the genes involved in methionine metabolism explain only a small fraction of the heritability of tHcy levels. In a genome-wide association study, we examined the genetic determinants of tHcy using a 2-stage design. First, 283 437 single nucleotide polymorphisms (SNPs) were tested for association with tHcy in 387 persons recruited from 21 large Spanish families. Of those, 17 SNPs showed equal or stronger association with tHcy level compared with the MTHFR 677C>T SNP (β = 0.10, P = .0001). Second, a replication analysis of these 17 SNPs was performed in patients with premature myocardial infarction (n = 1238). Novel associations were found for SNPs near the ZNF366 gene (lead SNP rs7445013; discovery stage: adjusted β = −0.12, P = 5.30 × 10−6, replication stage: adjusted β = −0.13, P = .004) and the PTPRD gene (lead SNP rs973117; discovery stage: adjusted β = 0.11, P = 5.5 × 10−6, replication stage: adjusted β = 0.10, P = .005). These associations were independent of known confounders, including creatinine clearance and plasma fibrinogen concentration. Our findings implicate novel pathways in homocysteine metabolism, and highlight the need for investigation of the associated genes in the etiology of vascular diseases.

Keywords

Adult, Aged, 80 and over, Male, Adolescent, Genome, Human, Fibrinogen, Infant, Atherosclerosis, Cohort Studies, Child, Preschool, Creatinine, Humans, Family, Female, Carrier Proteins, Child, Homocysteine, Biomarkers, Aged, Genome-Wide Association Study

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    27
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
27
Average
Top 10%
Top 10%
Green
bronze