Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Cell Scie...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Cell Science
Article . 2002 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

Domains of the Pavarotti kinesin-like protein that direct its subcellular distribution: effects of mislocalisation on the tubulin and actin cytoskeleton duringDrosophilaoogenesis

Authors: Gianluca, Minestrini; Endre, Máthé; David M, Glover;

Domains of the Pavarotti kinesin-like protein that direct its subcellular distribution: effects of mislocalisation on the tubulin and actin cytoskeleton duringDrosophilaoogenesis

Abstract

The kinesin-like protein encoded by pavarotti (Pav-KLP) is essential for cytokinesis and associates with the central part of the late mitotic spindle and interphase nuclei in somatic cells (Adams et al., 1988). Here we define regions of the molecule that regulate its subcellular localisation and study the consequences of overexpressing mutant forms of the protein during oogenesis in Drosophila. Pav-KLP normally associates with the oocyte nucleus, but when over-expressed at moderate levels, its GFP tagged form also accumulates in nurse cell nuclei. At high expression levels this leads to loss of the microfilaments that tether these nuclei, so that they block the ring canals and prevent the `dumping' of nurse cell cytoplasm into the oocyte, which results in sterility. Localisation to these nuclei is prevented by mutations in either the conserved ATP-binding site of the motor domain or the nuclear localisation sequences in the C-terminal domain. Both such mutations lead to the formation of stable arrays of cytoplasmic microtubules and the progressive disruption of the actin cytoskeleton. The latter is evident by a breakdown of the cortical actin causing disruption of cell membranes; this breakdown ultimately results in the accumulation of cytoplasmic aggregates containing tubulin, actin and at least some of their binding proteins. Pav-KLP is also found associated with the ring canals,actin-rich structures built from remnants of the cytokinesis ring. The stalk domain alone is sufficient for the exclusive association of Pav-KLP to these structures, and this has no consequences for fertility. We discuss whether disruption of actin structures by full-length cytoplasmic forms of Pav-KLP is a consequence of the resulting stabilised cytoplasmic microtubules per se or accumulation of the motor protein at ectopic cortical sites to sequester molecules that regulate actin behaviour.

Related Organizations
Keywords

Green Fluorescent Proteins, Immunohistochemistry, Microtubules, Actins, Protein Structure, Tertiary, Actin Cytoskeleton, Luminescent Proteins, Oogenesis, Tubulin, Mutation, Animals, Drosophila Proteins, Drosophila, Female, Microtubule-Associated Proteins, Cytoskeleton

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    85
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
85
Top 10%
Top 10%
Top 10%
bronze