Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Gliaarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Glia
Article . 1995 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
Glia
Article . 1996
versions View all 2 versions

Gene amplification in human gliomas

Authors: V P, Collins;
Abstract

AbstractGliomas represent the largest group of primary brain tumors in adults. The astrocytic variants are the most common and the adult forms are histologically stratified into three malignancy grades. Of these glioblastoma is the most common and the most malignant; it has also been best studied by molecular genetics and cytogenetics. Double‐minute chromosomes, known to represent amplified genes, are found in 50% of glioblastomas. Amplified genes are not detected in the most benign of the astrocytomas. Many genes have been shown to be amplified in more than single cases of gliomas and these include EGFR, CDK4, SAS, MDM2, GLI, PDGFAR, MYC, N MYC, MYCL1, MET, GADD153, and KIT. The most commonly amplified genes in glioblastomas are EGFR (in approximately 40%), CDK4, and SAS (in approximately 15%). The remainder of the genes are amplified at lower frequency. The best mapped amplicon in gliomas involves the 12q13–14 region. The amplicon is of undetermined size, encompasses a number of genes, and may be rearranged. It occurs in 15% of glioblastomas and almost always includes the CDK4 and SAS genes, in about 10% of tumors of MDM2 gene, and at lower frequency GLI, GADD153, and A2MR. All but A2MR are overexpressed if amplified. The amplified EGFR gene is frequently rearranged, resulting in changes in the regions of the transcript that codes for the extracellular domain. The resultant receptor is constitutively activated. These findings provide examples of the impact the use of modern molecular biological techniques has had on our understanding of oncogenic mechanisms in gliomas. © 1995 Wiley‐Liss, Inc.

Related Organizations
Keywords

Adult, Gene Rearrangement, Brain Neoplasms, Gene Amplification, Humans, Genes, erbB-1, Glioma

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    146
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
146
Top 10%
Top 1%
Top 10%