Powered by OpenAIRE graph

Increased Protein Arginine Methylation in Chronic Hypoxia

Role of Protein Arginine Methyltransferases
Authors: Ali O, Yildirim; Patrick, Bulau; Dariusz, Zakrzewicz; Kamila E, Kitowska; Norbert, Weissmann; Friedrich, Grimminger; Rory E, Morty; +1 Authors

Increased Protein Arginine Methylation in Chronic Hypoxia

Abstract

Asymmetric dimethylarginine (ADMA) is an endogenous inhibitor of nitric oxide synthesis. ADMA is generated by catabolism of proteins containing methylated arginine residues, and its levels are correlated with endothelial dysfunction in systemic cardiovascular diseases. Arginine methylation of cellular proteins is catalyzed by protein arginine methyltransferases (PRMT). The expression and localization of PRMT in the lung has not been addressed. Here, we sought to analyze the expression of PRMT isoforms in the lung and to determine whether PRMT expression is altered during exposure to chronic hypoxia (10% oxygen). Adult mice were exposed to hypoxia for up to 3 wk, and lung tissues were harvested and processed for RT-PCR, Western blotting, immunohistochemistry, and determination of tissue ADMA levels. All PRMT isoforms investigated were detected at the mRNA and protein level in mouse lung, and were localized primarily to the bronchial and alveolar epithelium. In lungs of mice subjected to chronic hypoxia, PRMT2 mRNA and protein levels were up-regulated, whereas the expression of all other PRMT isoforms remained unchanged. This was mainly due to increased expression of PRMT2 in alveolar type II cells, which did not express detectable levels of PRMT2 under normoxic conditions. Consistent with these observations, lung ADMA levels and ADMA/l-Arginine ratios were increased under hypoxic conditions. These results demonstrate that PRMTs are expressed and functional in the lung, and that hypoxia is a potent regulator of PRMT2 expression and lung ADMA concentrations. These data suggest that structural and functional changes caused by hypoxia may be linked to ADMA metabolism.

Related Organizations
Keywords

Isoenzymes, Male, Mice, Mice, Inbred BALB C, Protein-Arginine N-Methyltransferases, Animals, Arginine, Hypoxia, Lung, Methylation

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    76
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
76
Top 10%
Top 10%
Top 10%