Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Geneticaarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Genetica
Article . 1998 . Peer-reviewed
License: Springer Nature TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1007/978-94...
Part of book or chapter of book . 1998 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
Genetica
Article . 1998
versions View all 3 versions

The molecular clock revisited: the rate of synonymous vs. replacement change in Drosophila

Authors: L W, Zeng; J M, Comeron; B, Chen; M, Kreitman;

The molecular clock revisited: the rate of synonymous vs. replacement change in Drosophila

Abstract

Rates of synonymous and nonsynonymous substitution were investigated for 24 genes in three Drosophila species, D. pseudoobscura, D. subobscura, and D. melanogaster. D. pseudoobscura and D. subobscura, two distantly related members of the obscura clade, differ on average by 0.29 synonymous nucleotide substitutions per site. D. melanogaster differs from the two obscura species by an average of 0.81 synonymous substitutions per site. Using a method developed by Gillespie, we investigated the variance to mean ratio, or Index of Dispersion, R, of substitutions along the three species' branches to test the fundamental prediction of the neutral theory of molecular evolution, E(R) = 1. For nonsynonymous substitutions, the average R, Ra is 1.6, which is not significantly different from the neutral theory prediction. Only 5 of the 24 genes had significantly large Ra valves, and 12 of the genes had Ra estimates of less than one. In contrast, the Index of Dispersion for synonymous substitutions was significantly large for 12 of the 24 genes, with an average of R(s) = 4.4, also statistically significant. These findings contrast with results for mammals, which showed overdispersion of nonsynonymous substitutions, but not of synonymous substitutions. Weak selection acting to maintain codon bias in Drosophila, but not in mammals, may be important in explaining the high variance in the rate of synonymous substitutions in this group of organisms.

Related Organizations
Keywords

Mammals, Genes, Insect, Time, Evolution, Molecular, Drosophila melanogaster, Animals, Point Mutation, Regression Analysis, Drosophila, Selection, Genetic, Codon

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    48
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
48
Average
Top 10%
Top 10%