Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Naturearrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Nature
Article . 2004 . Peer-reviewed
License: Springer Nature TDM
Data sources: Crossref
Nature
Article . 2004
versions View all 2 versions

The netrin receptor UNC5B mediates guidance events controlling morphogenesis of the vascular system

Authors: Xiaowei, Lu; Ferdinand, Le Noble; Li, Yuan; Quingjan, Jiang; Benjamin, De Lafarge; Daisuke, Sugiyama; Christiane, Bréant; +7 Authors

The netrin receptor UNC5B mediates guidance events controlling morphogenesis of the vascular system

Abstract

Blood vessels and nerves are complex, branched structures that share a high degree of anatomical similarity. Guidance of vessels and nerves has to be exquisitely regulated to ensure proper wiring of both systems. Several regulators of axon guidance have been identified and some of these are also expressed in endothelial cells; however, the extent to which their guidance functions are conserved in the vascular system is still incompletely understood. We show here that the repulsive netrin receptor UNC5B is expressed by endothelial tip cells of the vascular system. Disruption of the Unc5b gene in mice, or of Unc5b or netrin-1a in zebrafish, leads to aberrant extension of endothelial tip cell filopodia, excessive vessel branching and abnormal navigation. Netrin-1 causes endothelial filopodial retraction, but only when UNC5B is present. Thus, UNC5B functions as a repulsive netrin receptor in endothelial cells controlling morphogenesis of the vascular system.

Keywords

Tumor Suppressor Proteins, Molecular Sequence Data, Endothelial Cells, Receptors, Cell Surface, Netrin-1, Zebrafish Proteins, Mice, Cell Movement, Mutation, Morphogenesis, Animals, Blood Vessels, Endothelium, Vascular, Nerve Growth Factors, Pseudopodia, RNA, Messenger, Netrin Receptors, Zebrafish, Cell Size

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    486
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
486
Top 1%
Top 1%
Top 1%