Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2006 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

Visual and Both Non-visual Arrestins in Their “Inactive” Conformation Bind JNK3 and Mdm2 and Relocalize Them from the Nucleus to the Cytoplasm

Authors: Xiufeng, Song; Dayanidhi, Raman; Eugenia V, Gurevich; Sergey A, Vishnivetskiy; Vsevolod V, Gurevich;

Visual and Both Non-visual Arrestins in Their “Inactive” Conformation Bind JNK3 and Mdm2 and Relocalize Them from the Nucleus to the Cytoplasm

Abstract

Arrestins bind active phosphorylated G protein-coupled receptors, terminating G protein activation. Receptor-bound non-visual arrestins interact with numerous partners, redirecting signaling to alternative pathways. Arrestins also have nuclear localization and nuclear exclusion signals and shuttle between the nucleus and the cytoplasm. Constitutively shuttling proteins often redistribute their interaction partners between the two compartments. Here we took advantage of the nucleoplasmic shuttling of free arrestins and used a "nuclear exclusion assay" to study their interactions with two proteins involved in "life-and-death" decisions in the cell, the kinase JNK3 and the ubiquitin ligase Mdm2. In human embryonic kidney 293 cells green fluorescent protein (GFP)-JNK3 and GFP-Mdm2 predominantly localize in the nucleus, whereas visual arrestin, arrestin2(Q394L) mutant equipped with the nuclear exclusion signal, and arrestin3 localize exclusively to the cytoplasm. Coexpression of arrestins moves both GFP-JNK3 and GFP-Mdm2 to the cytoplasm. Arrestin mutants "frozen" in the basal conformation are the most efficacious. Thus, arrestins in their basal state interact with JNK3 and Mdm2, suggesting that arrestins are likely "preloaded" with their interaction partners when they bind the receptor. Robust interaction of free arrestins with JNK3 and Mdm2 and their ability to regulate subcellular localization of these proteins may play an important role in the survival of photoreceptors and other neurons, as well as in retinal and neuronal degeneration.

Related Organizations
Keywords

Cell Nucleus, Neurons, Cytoplasm, Arrestins, Cell Survival, Proto-Oncogene Proteins c-mdm2, Retina, Cell Line, Rats, Mice, Inbred C57BL, Mice, Mitogen-Activated Protein Kinase 10, Animals, Humans

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    125
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
125
Top 10%
Top 10%
Top 10%
gold