Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Developmental Biolog...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Developmental Biology
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Developmental Biology
Article . 2013
License: Elsevier Non-Commercial
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Developmental Biology
Article . 2013 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
versions View all 4 versions

Negative regulation of Shh levels by Kras and Fgfr2 during hair follicle development

Authors: Suguna Rani Krishnaswami; Benjamin D. Yu; Christopher Cowing-Zitron; Julianne Burns; Anandaroop Mukhopadhyay; Nai-Jung Hung; Heather Reilly-Rhoten;

Negative regulation of Shh levels by Kras and Fgfr2 during hair follicle development

Abstract

Activating mutations in the KRAS oncogene are associated with three related human syndromes, which vary in hair and skin phenotypes depending on the involved allele. How variations in RAS signals are interpreted during hair and skin development is unknown. In this study, we investigated the developmental and transcriptional response of skin and hair to changes in RAS activity, using mouse genetic models and microarray analysis. While activation of Kras (Kras(G12D)) in the skin had strong effects on hair growth and hair shape, steady state changes in downstream RAS/MAPK effectors were subtle and detected only by transcriptional responses. To model the transcriptional response of multiple developmental pathways to active RAS, the effects of growth factor stimulation were studied in skin explants. Here FGF acutely suppressed Shh transcription within 90 min but had significantly less effect on Eda, WNT, Notch or BMP pathways. Furthermore, in vivo Fgfr2 loss-of-function in the ectoderm caused derepression of Shh, revealing a role for FGF in Shh regulation in the hair follicle. These studies define both dosage sensitive effects of RAS signaling on hair morphogenesis and reveal acute mechanisms for fine-tuning Shh levels in the hair follicle.

Keywords

Transcription, Genetic, Down-Regulation, Amplitude, Shh, Proto-Oncogene Proteins p21(ras), Mice, FGF, Animals, Humans, Hedgehog Proteins, Receptor, Fibroblast Growth Factor, Type 2, Molecular Biology, Cell Proliferation, Oligonucleotide Array Sequence Analysis, Skin, Hair follicle, Gene Expression Regulation, Developmental, Receptor Protein-Tyrosine Kinases, Cell Differentiation, Cell Biology, Organ Size, Hair Follicle, Morphogen, Signal strength, RAS, Developmental Biology, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    35
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
35
Top 10%
Top 10%
Top 10%
hybrid