Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Gliaarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Glia
Article . 2001 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
Glia
Article . 2001
versions View all 2 versions

Schwann cell myelination occurred without basal lamina formation in laminin α2 chain‐null mutant (dy3K/dy3K) mice

Authors: M, Nakagawa; Y, Miyagoe-Suzuki; K, Ikezoe; Y, Miyata; I, Nonaka; K, Harii; S, Takeda;

Schwann cell myelination occurred without basal lamina formation in laminin α2 chain‐null mutant (dy3K/dy3K) mice

Abstract

AbstractThe laminin α2 chain is a major component of basal lamina in both skeletal muscle and the peripheral nervous system. Laminin α2 chain deficiency causes merosin‐deficient congenital muscular dystrophy, which affects not only skeletal muscles, but also the peripheral and central nervous systems. It has been reported that the formation of basal lamina is required for myelination in the peripheral nervous system. In fact, the spinal root of dystrophic mice (dy/dy mice), whose laminin α2 chain expression is greatly reduced, shows lack of basal lamina and clusters of naked axons. To investigate the role of laminin α2 chain and basal lamina in vivo, we examined the peripheral nervous system of dy3K/dy3Kmice, which are null mutants of laminin α2 chain. The results indicate the presence of myelination although Schwann cells lacked basal lamina in the spinal roots of dy3K/dy3K mice, suggesting that basal lamina is not an absolute requirement for myelination in vivo. Immunohistochemically, the expression of laminin α4 chain was increased and laminin α5 chain was preserved in the endoneurium of the spinal root. Laminin α4 and α5 chains may play the critical role in myelination instead of laminin α2 chain in dy3K/dy3Kmice. In addition, the motor conduction velocity of the sciatic nerve was significantly reduced compared with that of wild‐type littermate. This reduction in conduction velocity may be due to small axon diameter, thin myelin sheath and the patchy disruption of the basal lamina of the nodes of Ranvier in dy3K/dy3Kmice. GLIA 35:101–110, 2001. © 2001 Wiley‐Liss, Inc.

Keywords

Neural Conduction, 333, Basement Membrane, Mice, Mice, Neurologic Mutants, Knockout mouse, Peripheral nerve, Laminin M chain, Animals, Peripheral Nerves, Myelin Sheath, Cell Size, Mice, Knockout, Lumbar Vertebrae, Extracellular matrix, Immunohistochemistry, Sciatic Nerve, Axons, Microscopy, Electron, Laminin, Schwann Cells, Merosin, Spinal Nerve Roots

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    56
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
56
Average
Top 10%
Top 10%