Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Developmental Biolog...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Developmental Biology
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Developmental Biology
Article . 2006
License: Elsevier Non-Commercial
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Developmental Biology
Article . 2006 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
versions View all 5 versions

Na+/K+-ATPase regulates tight junction formation and function during mouse preimplantation development

Authors: Violette, Michelle I; Madan, Pavneesh; Watson, Andrew J;

Na+/K+-ATPase regulates tight junction formation and function during mouse preimplantation development

Abstract

Research applied to the early embryo is required to effectively treat human infertility and to understand the primary mechanisms controlling development to the blastocyst stage. The present study investigated whether the Na(+)/K(+)-ATPase regulates tight junction formation and function during blastocyst formation. To investigate this hypothesis, three experimental series were conducted. The first experiments defined the optimal dose and treatment time intervals for ouabain (a potent and specific inhibitor of the Na(+)/K(+)-ATPase) treatment. The results demonstrated that mouse embryos maintained a normal development to the blastocyst stage following a 6-h ouabain treatment. The second experiments investigated the effects of ouabain treatment on the distribution of ZO-1 and occludin (tight junction associated proteins). Ouabain treatment (up to 6 h) or culture in K(+)-free medium (up to 6 h) resulted in the appearance of a discontinuous ZO-1 protein distribution and a loss of occludin immunofluorescence. The third set of experiments examined the influence of ouabain treatment on tight junction function. Ouabain treatment or culture in K(+)-free medium affected tight junction permeability as indicated by an increase in the proportion of treated embryos accumulating both 4 kDa and 40 kDa fluorescein isothiocyanate (FITC)-dextran into their blastocyst cavities. The results indicate that the Na(+)/K(+)-ATPase is a potent regulator of tight junction formation and function during mouse preimplantation development.

Country
Canada
Keywords

Male, 570, Time Factors, Embryonic Development, Cell Count, 630, Fluorescence, Tight Junctions, Dose-Response Relationship, Cell junctions, Mice, In vitro fertilization, Occludin, Animals, Enzyme Inhibitors, Ouabain, Molecular Biology, Ion transport, Microscopy, Microscopy, Confocal, Dose-Response Relationship, Drug, Obstetrics and Gynecology, Membrane Proteins, Cell Biology, Phosphoproteins, Blastocyst, Microscopy, Fluorescence, Confocal, Cell polarity, Zonula Occludens-1 Protein, Trophectoderm, Female, Drug, Sodium-Potassium-Exchanging ATPase, Developmental Biology

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    72
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
72
Top 10%
Top 10%
Top 10%
Green
hybrid