Characterization of Raloxifene Glucuronidation: Potential Role of UGT1A8 Genotype on Raloxifene MetabolismIn Vivo
Characterization of Raloxifene Glucuronidation: Potential Role of UGT1A8 Genotype on Raloxifene MetabolismIn Vivo
AbstractRaloxifene is a second-generation selective estrogen receptor modulator used for the prevention and treatment of osteoporosis and the prevention of breast cancer in postmenopausal women. Raloxifene is extensively metabolized by glucuronidation to form raloxifene-6-glucuronide (ral-6-Gluc) and raloxifene-4′-glucuronide (ral-4′-Gluc). The goal of the present study was to determine whether functional polymorphisms in active UGTs could play a role in altered raloxifene glucuronidation in vivo. Using homogenates from HEK293 UGT-overexpressing cell lines, raloxifene was shown to be glucuronidated primarily by the hepatic UGTs 1A1 and 1A9 and the extra-hepatic UGTs 1A8 and 1A10; no detectable raloxifene glucuronidation activity was found for UGT2B enzymes. Functional UGT1A1 transcriptional promoter genotypes were significantly (Ptrend = 0.005) associated with ral-6-Gluc formation in human liver microsomes, and, consistent with the decreased raloxifene glucuronidation activities observed in vitro with cell lines overexpressing UGT1A8 variants, the UGT1A8*2 variant was significantly (P = 0.023) correlated with total raloxifene glucuronide formation in human jejunum homogenates. While ral-4′-Gluc exhibited 1:100th the anti-estrogenic activity of raloxifene itself as measured by binding to the estrogen receptor, raloxifene glucuronides comprised about 99% of the circulating raloxifene dose in raloxifene-treated subjects, with ral-4′-Gluc comprising ∼70% of raloxifene glucuronides. Plasma ral-6-Gluc (Ptrend = 0.0025), ral-4′-Gluc (Ptrend = 0.001), and total raloxifene glucuronides (Ptrend = 0.001) were increased in raloxifene-treated subjects who were predicted slow metabolizers [UGT1A8 (*1/*3)] versus intermediate metabolizers [UGT1A8 (*1/*1) or UGT1A8 (*1/*2)] versus fast metabolizers [UGT1A8 (*2/*2). These data suggest that raloxifene metabolism may be dependent on UGT1A8 genotype and that UGT1A8 genotype may play an important role in overall response to raloxifene. Cancer Prev Res; 6(7); 719–30. ©2013 AACR.
- Washington State University United States
- Penn State Milton S. Hershey Medical Center United States
- Pennsylvania State University United States
Polymorphism, Genetic, Genotype, Estrogen Antagonists, Breast Neoplasms, 618, Gene Expression Regulation, Neoplastic, Glucuronides, Jejunum, Tandem Mass Spectrometry, Raloxifene Hydrochloride, Microsomes, Liver, Humans, Female, Glucuronosyltransferase, Cells, Cultured
Polymorphism, Genetic, Genotype, Estrogen Antagonists, Breast Neoplasms, 618, Gene Expression Regulation, Neoplastic, Glucuronides, Jejunum, Tandem Mass Spectrometry, Raloxifene Hydrochloride, Microsomes, Liver, Humans, Female, Glucuronosyltransferase, Cells, Cultured
11 Research products, page 1 of 2
- 2017IsRelatedTo
- 2014IsAmongTopNSimilarDocuments
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2018IsAmongTopNSimilarDocuments
chevron_left - 1
- 2
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).34 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
