Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Proceedings of the N...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Proceedings of the National Academy of Sciences
Article . 2000 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

Natural selection mapping of the warfarin-resistance gene

Authors: M H, Kohn; H J, Pelz; R K, Wayne;

Natural selection mapping of the warfarin-resistance gene

Abstract

In theory, genes under natural selection can be revealed by unique patterns of linkage disequilibrium (LD) and polymorphism at physically linked loci. However, given the effects of recombination and mutation, the physical extent and persistence of LD patterns in natural populations is uncertain. To assess the LD signature of selection, we survey variation in 26 microsatellite loci spanning an ≈32-cM region that includes the warfarin-resistance gene ( Rw ) in five wild rat populations having resistance levels between 0 and 95%. We find a high frequency of heterozygote deficiency at microsatellite loci in resistant populations, and a negative association between gene diversity (H) and resistance. Contrary to previous studies, these data suggest that directional rather than overdominant selection may predominate during periods of intense anticoagulant treatment. In highly resistant populations, extensive LD was observed over a chromosome segment spanning ≈14% of rat chromosome 1. In contrast, LD in a moderately resistant population was more localized and, in conjunction with likelihood ratios, allowed assignment of Rw to a 2.2-cM interval. Within this genomic window, a diagnostic marker, D1Rat219 , assigned 91% of rats to the correct resistance category. These results further demonstrate that “natural selection mapping” in field populations can detect and map major fitness-related genes, and question overdominance as the predominant mode of selection in anticoagulant-resistant rat populations.

Related Organizations
Keywords

Likelihood Functions, Drug Resistance, Anticoagulants, Chromosome Mapping, Rodenticides, Animals, Wild, Linkage Disequilibrium, Rats, Germany, Animals, Warfarin, Selection, Genetic, Microsatellite Repeats

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    101
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
101
Top 10%
Top 10%
Top 10%
bronze