Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Biological and Pharm...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Biological and Pharmaceutical Bulletin
Article . 2002 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

Adhesive Defect in Extracellular Matrix Tenascin-X-Null Fibroblasts: A Possible Mechanism of Tumor Invasion.

Authors: Minamitani, Takeharu; Ariga, Hiroyoshi; Matsumoto, Ken-Ichi;

Adhesive Defect in Extracellular Matrix Tenascin-X-Null Fibroblasts: A Possible Mechanism of Tumor Invasion.

Abstract

Extracellular matrix tenascin-X (TNX)-null mice, generated by disruption of the Tnx gene, display augmented invasion and metastasis of B16-BL6 melanoma tumor cells due to increased activities of matrix metalloproteinase (MMP)-2 and MMP-9. In this study, we investigated cell-matrix and cell-cell adhesions using TNX-null fibroblasts and wild-type fibroblasts. TNX-null fibroblasts exhibited a decreased attachment to fibronectin compared with that of wild-type fibroblasts. B16 melanoma cells were cocultured with wild-type or TNX-null fibroblasts, and the adhesion of B16 melanoma to the fibroblasts was assessed. B16 melanoma cells on wild-type fibroblasts proliferated and spread out in a horizontal direction, whereas those on TNX-null fibroblasts overlapped each other rather than migrating horizontally. These overlapping B16 melanoma cells on TNX-null fibroblasts peeled off faster than those on wild-type fibroblasts. To determine whether the decreased cell-matrix and cell-cell adhesions on TNX-null fibroblasts were due to increased MMP activity, the activities of MMPs in wild-type and TNX-null fibroblasts were compared by gelatinolytic assays. The analysis of MMPs from conditioned media demonstrated that almost the same levels of MMP activities were detected between wild-type and TNX-null fibroblasts. However, contrary to our expectations the activities of MMPs from conditioned media of B16 melanoma cells cocultured on TNX-null fibroblasts were rather reduced than those of B16 melanoma cells cocultured on wild-type. We concluded that the absence of TNX in the extracellular environment might play an important role in enhancement of the detachment of B16 melanoma cells.

Keywords

matrix metalloproteinase, Cell Adhesion/genetics, extracellular matrix, Knockout, Melanoma, Experimental, Tenascin/genetics, Inbred C57BL, Tenascin/deficiency, tenascin-X, 499, Mice, melanoma, Cell Adhesion, Tumor Cells, Cultured, Animals, Experimental/pathology, Neoplasm Invasiveness, Experimental/genetics, Experimental/metabolism, Fibroblasts/metabolism, Mice, Knockout, Mice, Inbred ICR, Cultured, Inbred CBA, Tenascin, Extracellular Matrix/metabolism, Fibroblasts, Inbred ICR, Coculture Techniques, Tumor Cells, Extracellular Matrix, Mice, Inbred C57BL, Extracellular Matrix/genetics, Mice, Inbred CBA, Neoplasm Invasiveness/pathology, Coculture Techniques/methods, Neoplasm Invasiveness/genetics

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    10
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
10
Average
Average
Average
gold