Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Functional Plant Bio...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Functional Plant Biology
Article . 2011 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

The continuous accumulation of Na+ in detached leaf sections is associated with over-expression of NTHK1 and salt tolerance in poplar plants

Authors: Ying, Zhang; Ying-Xia, Yang; Xiangming, Zhou; Yan-Hong, Jia; Li-Li, Nie; Yue, Zhang; Shou-Yi, Chen; +2 Authors

The continuous accumulation of Na+ in detached leaf sections is associated with over-expression of NTHK1 and salt tolerance in poplar plants

Abstract

Detached leaf sections (2 × 2 cm2) from transgenic poplar line 18-1 and its wild type (WT) (Populus × euramericana ‘Neva’) were used to test their salt tolerance and gene expression under controlled environment conditions. The sections from line 18-1 displayed better tolerance to NaCl stress, indicated by high chlorophyll retention and K+ content but low relative electrolyte leakage (REL). Transient overexpression of NTHK1 (Nicotiana tabacum histidine kinase 1) and V-H+-PPase was found in the detached young leaves from line 18-1 after they had been stressed for a few minutes. The activities of vacuolar-type H+-ATPase and H+-PPase in line 18-1 were boosted initially and then decreased to normal level as in unstressed leaves. After sections were stressed for 10 days, the maximal Na+ concentration in line 18-1 was much higher than that in the WT. The higher capacity for Na+ accumulation in line 18-1 may be due to stable Na+ sequestration into the vacuoles. Osmotic stress imposed little effect on REL and chlorophyll content of the sections. The capacity of detached leaf sections in NaCl solution to tolerate stress and to accumulate Na+ may be useful for identifying genotypes with good salt tolerance in poplar and other plants.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Average
Average
Average