<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>Taking Simultaneous Snapshots of Intrinsically Disordered Proteins in Action
Taking Simultaneous Snapshots of Intrinsically Disordered Proteins in Action
Intrinsically disordered proteins (IDPs) as well as intrinsically disordered regions (IDRs) of complex protein machineries have recently been recognized as key players in many cellular functions. NMR represents a unique tool to access atomic resolution structural and dynamic information on highly flexible IDPs/IDRs. Improvements in instrumental sensitivity made heteronuclear direct detection possible for biomolecular NMR applications. The CON experiment has become one of the most useful NMR experiments to get a snapshot of an IDP/IDR in conditions approaching physiological ones. The availability of NMR spectrometers equipped with multiple receivers now enables the acquisition of several experiments simultaneously instead of one after the other. Here, we propose several variants of the CON experiment in which, during the recovery delay, a second two-dimensional experiment is acquired, either based on 1H detection (CON//HN) or on 15N detection (CON//btNH, CON//(H)CAN). The possibility to collect simultaneous snapshots of an IDP/IDR through different two-dimensional spectra provides a novel tool to follow chemical reactions, such as the occurrence of posttranslational modifications, as well as to study samples of limited lifetime such as cell lysates or whole cells.
- Università degli studi di Salerno Italy
- Bruker Biospin AG Switzerland
- University of Florence Italy
- University of Florence Italy
- BRUKER BIOSPIN GMBH Germany
Intrinsically Disordered Proteins, Protein Folding, Spin Labels, Nuclear Magnetic Resonance, Biomolecular, IDP; NMR; multiple-received; 13C direct detection; CON
Intrinsically Disordered Proteins, Protein Folding, Spin Labels, Nuclear Magnetic Resonance, Biomolecular, IDP; NMR; multiple-received; 13C direct detection; CON
3 Research products, page 1 of 1
- 2021IsAmongTopNSimilarDocuments
- 2019IsAmongTopNSimilarDocuments
- 2019IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).21 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
