Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Bioenerge...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Bioenergetics and Biomembranes
Article . 2007 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions

Na,K-ATPase and the role of α isoforms in behavior

Authors: Jerry B, Lingrel; Michael T, Williams; Charles V, Vorhees; Amy E, Moseley;

Na,K-ATPase and the role of α isoforms in behavior

Abstract

The Na,K-ATPase is composed of multiple isoforms and the isoform distribution varies with the tissue and during development. The alpha1 isoform for example, is the major isoform in the kidney and many other tissues, while the alpha2 isoform is the predominate one in skeletal muscle. All three isoforms are found in the brain although in adult rodent brain, the alpha 3 isoform is located essentially in neurons while the alpha2 isoform is found in astrocytes and some limited neuronal populations. Interestingly the alpha 4 isoform is found exclusively in the mid region of the sperm tail. The distribution of the isoforms of the Na,K-ATPase has been extensively studied in many tissues and during development. The examples cited above provide some indication to the diversity of Na,K-ATPase isoform expression. In order to understand the significance of this distribution, we have developed animals which lack the alpha1, alpha2, and alpha 3 isoforms. It is anticipated that these studies will provide insight into the role that these isoforms play in driving various biological processes in specific tissues. Here we describe some of our studies which deal with the behavioral aspects of the alpha1, alpha2, and alpha 3 deficient mice, particularly those that are haploinsufficient in one isoform i.e. lacking one functional gene for the alpha1, alpha2, or alpha 3 isoforms. Such studies are important as two human diseases are associated with deficiency in the alpha2 and alpha 3 isoforms. These are Familial Hemiplegic Migraine type 2 and Rapid-Onset Dystonia Parkinsonism, these diseases result from alpha2 and alpha 3 isoform haploinsufficiency, respectively. We find that the haploinsufficiency of both alpha2 and alpha 3 isoforms result in behavioral defects.

Keywords

Mice, Knockout, Mice, Protein Subunits, Behavior, Animal, Animals, Learning, Protein Isoforms, Motor Activity, Sodium-Potassium-Exchanging ATPase

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    85
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
85
Top 10%
Top 10%
Top 10%