Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 1996 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

Molecular Cloning and Developmental Expression of Mouse p130, a Member of the Retinoblastoma Gene Family

Authors: G, Chen; C T, Guy; H W, Chen; N, Hu; E Y, Lee; W H, Lee;

Molecular Cloning and Developmental Expression of Mouse p130, a Member of the Retinoblastoma Gene Family

Abstract

With sequence homology to the SV40 T antigen-binding domain of the retinoblastoma protein (Rb), p107 and p130 constitute two additional members of the Rb family. To explore the potential function of p130 in mouse development, we cloned the full-length mouse cDNA for p130 and characterized p130 mRNA expression in mice. The deduced mouse p130 protein sequence shares a higher degree of similarity with mouse p107 than with mouse Rb. In adult mice, p130 mRNA is found in all tissues examined. Levels of p130 mRNA vary among different adult tissues, with the highest level in testis. Within testis, p130 mRNA is found predominantly in Leydig cells. Additionally, p130 expression in testis correlates with sexual maturation, suggesting p130 is important for the development of testis and, in particular, Leydig cells. In situ hybridization shows that in post coitus day 12.5 and 14.5 mouse embryos, distribution of p130 mRNA is quite uniform with the exception of a few tissues. Little differences in mRNA levels of either p130 or p107 were found between normal and Rb-deficient embryos, suggesting that p130 and p107 are expressed independently of Rb. Our data are consistent with the hypothesis that p130 and p107 do not compensate for the loss of Rb and support the view that p130 is related to, yet distinct from, the RB gene.

Keywords

Male, Aging, Base Sequence, Antigens, Polyomavirus Transforming, Molecular Sequence Data, Leydig Cells, Embryo, Mammalian, Phosphoproteins, Mice, Inbred C57BL, Embryonic and Fetal Development, Mice, Gene Expression Regulation, Multigene Family, Animals, Female, Amino Acid Sequence, Cloning, Molecular, Genes, Retinoblastoma, In Situ Hybridization, Gene Library

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    42
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
42
Average
Top 10%
Top 10%
gold