Microscopy Methods for the Study of Centriole Biogenesis and Function in Drosophila
pmid: 20719274
Microscopy Methods for the Study of Centriole Biogenesis and Function in Drosophila
Centrosomes regulate cell motility, adhesion, and polarity in interphase and participate in spindle formation in mitosis. They are composed of two centrioles, which are microtubule-based structures, and a proteinaceous matrix recruited by those, called pericentriolar material. Centrioles are also necessary for the nucleation of the axoneme, the microtubule inner structure of cilia and flagella. The fruit fly, Drosophila melanogaster, has played an important role in the study of cell biology processes and their contextualization in a variety of developmental phenomena. In this chapter, we describe immunofluorescence and electron microscopy methods used to study Drosophila early embryogenesis and spermatogenesis. These methods have been widely used to study centriole assembly and its function as a centrosome organizer during mitotic and meiotic cell divisions and as an axoneme nucleator in the formation of flagella.
- University of Siena Italy
- Instituto Gulbenkian de Ciência Portugal
- Gulbenkian Institute for Molecular Medicine Portugal
Male, Microscopy, Drosophila melanogaster, Embryo, Nonmammalian, Animals, Spermatogenesis, Models, Biological, Centrioles
Male, Microscopy, Drosophila melanogaster, Embryo, Nonmammalian, Animals, Spermatogenesis, Models, Biological, Centrioles
25 Research products, page 1 of 3
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
chevron_left - 1
- 2
- 3
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).4 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
