Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Molecular and Cellul...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Molecular and Cellular Endocrinology
Article . 2010 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

Emerging roles for the FSH receptor adapter protein APPL1 and overlap of a putative 14-3-3τ interaction domain with a canonical G-protein interaction site

Authors: James A, Dias; Smita D, Mahale; Cheryl A, Nechamen; Olga, Davydenko; Richard M, Thomas; Alfredo, Ulloa-Aguirre;

Emerging roles for the FSH receptor adapter protein APPL1 and overlap of a putative 14-3-3τ interaction domain with a canonical G-protein interaction site

Abstract

The interaction of cytoplasmic proteins with intracellular domains of membrane receptors can occur at several opportunities, including: during biosynthesis, while in membrane residency and during internalization and recycling following ligand binding. Since the initial discovery that it interacts with the FSH receptor (FSHR) together with additional members of a potential signaling complex, APPL1 has been shown to interact with a variety of membrane receptors. Recent subcellular localizations of APPL1 place it in dynamic and varied venues in the cell, including at the cell membrane, the nucleus and the early endosomes. Another adapter protein family the 14-3-3 proteins, are largely recognized as binding to phosphorylation sites but recent work demonstrated that in the case of FSHR, the 14-3-3 site overlaps with the canonical G-protein binding site. G-proteins appear to sample the environment and exchange between the membrane and intracellular locales and this binding could be mediated by or modulated by receptor interactions at the 14-3-3 binding site. Observations that multiple proteins can interact with cytoplasmic domains of GPCRs leads to the inescapable conclusion that either the interactions occur via orderly replacement or exchange, or that receptors are simultaneously occupied by a variety of adapters and effectors or even that oligomers of dimeric GPCRs provide for platforms that can simultaneously interact with effectors and adaptors.

Keywords

Binding Sites, 14-3-3 Proteins, GTP-Binding Proteins, Humans, Receptors, FSH, Adaptor Proteins, Signal Transducing, Protein Binding

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    39
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
39
Top 10%
Average
Top 10%
bronze