Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Proceedings of the N...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Proceedings of the National Academy of Sciences
Article . 2011 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

Appendage expression driven by the Hoxd Global Control Region is an ancient gnathostome feature

Authors: Igor, Schneider; Ivy, Aneas; Andrew R, Gehrke; Randall D, Dahn; Marcelo A, Nobrega; Neil H, Shubin;

Appendage expression driven by the Hoxd Global Control Region is an ancient gnathostome feature

Abstract

The evolutionary transition of the fins of fish into tetrapod limbs involved genetic changes to developmental systems that resulted in novel skeletal patterns and functions. Approaches to understanding this issue have entailed the search for antecedents of limb structure in fossils, genes, and embryos. Comparative genetic analyses have produced ambiguous results: although studies of posterior Hox genes from homology group 13 (Hoxa-13 and Hoxd -13) reveal similarities in gene expression between the distal segments of fins and limbs, this functional homology has not been supported by genomic comparisons of the activity of their cis -regulatory elements, namely the Hoxd Global Control Region. Here, we show that cis -regulatory elements driving Hoxd gene expression in distal limbs are present in fish. Using an interspecies transgenesis approach, we find functional conservation between gnathostome Hoxd enhancers, demonstrating that orthologous sequences from tetrapods, zebrafish and skate can drive reporter gene expression in mouse limbs and zebrafish fins. Our results support the notion that some of the novelties associated with tetrapod limbs arose by modification of deeply conserved cis - and trans -acting mechanisms of Hox regulation in gnathostomes.

Related Organizations
Keywords

Homeodomain Proteins, Embryo, Nonmammalian, Gene Expression Profiling, Green Fluorescent Proteins, Molecular Sequence Data, DNA Helicases, Gene Expression Regulation, Developmental, Extremities, Mice, Transgenic, Regulatory Sequences, Nucleic Acid, Embryo, Mammalian, Biological Evolution, Animals, Genetically Modified, Mice, DNA Repair Enzymes, Animal Fins, Animals, Humans, Poly-ADP-Ribose Binding Proteins, Phylogeny

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    57
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
57
Top 10%
Top 10%
Top 10%
bronze