Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2003 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

PDZ Domain-mediated Interaction of Interleukin-16 Precursor Proteins with Myosin Phosphatase Targeting Subunits

Authors: Stephen Norley; Karin Vollhardt; Herbert König; Reinhard Kurth; Norbert Bannert; Bakhtier Asomuddinov; Marion Haag;

PDZ Domain-mediated Interaction of Interleukin-16 Precursor Proteins with Myosin Phosphatase Targeting Subunits

Abstract

The cytokine interleukin-16 is generated by posttranscriptional cleavage by caspase-3 of two large precursor isoforms. The smaller protein of 67 kDa (pro-IL-16) is expressed in cells of the immune system and contains three PDZ (postsynaptic density/disc large/zona occludens-1) domains, whereas the larger 141-kDa neuronal variant (npro-IL-16) has two additional PDZ domains in its N-terminal extension that interact with neuronal ion channels. Using the yeast two-hybrid approach we have identified three closely related myosin phosphatase targeting subunits, MYPT1, MYPT2, and MBS85, as binding partners of the IL-16 precursor proteins. These interactions were verified using pull-down assays, coimmunoprecipitations, and plasmon resonance experiments. Binding requires the intact PDZ2 domain of pro-IL-16 and highly related C-terminal regions in the ligands consisting of a short leucine zipper and an indispensable serine at the -1 position, suggesting a novel unconventional PDZ binding mode. Pro-IL-16 and the myosin phosphatase targeting subunits colocalize along actomyosin filaments and stress fibers in transfected COS-7 cells. By modulating and targeting the catalytic phosphatase subunit to its substrates, MYPT1, MYPT2, and MBS85 regulate various contractile processes in muscle and non-muscle cells. Our findings indicate an involvement of the IL-16 precursor molecules in myosin-based contractile processes, most likely in cell motility, providing a functional link to the chemotactic activity of the mature cytokine. Alternatively, an intracellular complex of npro-IL-16, ion channels, and components of myosin motors in neurons suggests a role in protein targeting.

Related Organizations
Keywords

Interleukin-16, Binding Sites, Molecular Sequence Data, Actomyosin, Ligands, Protein Structure, Tertiary, Myosin-Light-Chain Phosphatase, Protein Subunits, Stress Fibers, Two-Hybrid System Techniques, Leukocytes, Humans, Amino Acid Sequence, Protein Precursors, Protein Binding

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    33
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
33
Average
Top 10%
Top 10%
gold