Functional analysis of naturally occurring amino acid substitutions in human IFN-γR1
Functional analysis of naturally occurring amino acid substitutions in human IFN-γR1
IFN-gamma plays an essential role in the IL-12/IL-23/IFN-gamma pathway that is required for the defense against intracellular pathogens. In the IFN-gammaR1 several amino acid substitutions have been reported that abrogate IFN-gamma signaling. These substitutions can lead to a null phenotype and enhanced susceptibility to infection by poorly pathogenic mycobacteria, a disorder known as Mendelian Susceptibility to Mycobacterial Disease (MSMD). More common amino acid variations in the IFN-gammaR1 may also influence IFN-gammaR function, albeit more subtle. To determine the effect of various amino acid substitutions on IFN-gammaR1 expression and function we cloned two newly identified amino acid substitutions (S149L, I352M), four common variations (V14M, V61I, H335P, L467P), seven reported missense mutations (V61Q, V63G, Y66C, C77Y, C77F, C85Y, I87T) and the 818delTTAA mutation in a retroviral expression vector. IFN-gammaR1 expression was determined as well as responsiveness to IFN-gamma stimulation. The two newly discovered variants, and the four common polymorphisms could be detected on the cell surface, however, the V14M, H335P and I352M variants were significantly lower expressed at the cell membrane, compared to the wild type receptor. Despite the variance in cell surface expression, these IFN-gammaR1 variants did not affect function. In contrast to literature, in our model the expression of the V63G variant was severely reduced and its function was severely impaired but not completely abrogated. In addition, we confirmed the severely reduced function of the I87T mutant receptor, the completely abrogated expression and function of the V61E, V61Q, C77F, C77Y and the C85Y mutations, as well as the overexpression pattern of the 818delTTAA mutant receptor. The Y66C mutation was expressed at the cell surface, it was however, not functional. We conclude that the V14M, V61I, S149L, H335P, I352M and L467P are functional polymorphisms. The other variants are deleterious mutations with V61E, V61Q, Y66C, C77F, C77Y and C85Y leading to complete IFN-gammaR1 deficiency, while V63G and I87T lead to partial IFN-gammaR1 deficiency.
- Leiden University Medical Center Netherlands
IFN-gamma IFN-gamma R1 Signal transduction Immune deficiency Mutation interferon-gamma-receptor systemic-lupus-erythematosus calmette-guerin infection small deletion hotspot ifn-gamma mycobacterial infection listeria-monocytogenes 1 deficiency dominant cell, Amino Acid Substitution, Mutation, Missense, Gene Expression, Humans, Cell Line, Receptors, Interferon, Interferon gamma Receptor
IFN-gamma IFN-gamma R1 Signal transduction Immune deficiency Mutation interferon-gamma-receptor systemic-lupus-erythematosus calmette-guerin infection small deletion hotspot ifn-gamma mycobacterial infection listeria-monocytogenes 1 deficiency dominant cell, Amino Acid Substitution, Mutation, Missense, Gene Expression, Humans, Cell Line, Receptors, Interferon, Interferon gamma Receptor
11 Research products, page 1 of 2
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
chevron_left - 1
- 2
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).17 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
