Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao BioEssaysarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
BioEssays
Article . 1999 . Peer-reviewed
License: Wiley TDM
Data sources: Crossref
BioEssays
Article . 2000
versions View all 2 versions

Surviving Drosophila eye development: integrating cell death with differentiation during formation of a neural structure

Authors: N M, Bonini; M E, Fortini;

Surviving Drosophila eye development: integrating cell death with differentiation during formation of a neural structure

Abstract

Normal differentiation requires an appropriately orchestrated sequence of developmental events. Regulation of cell survival and cell death is integrated with these events to achieve proper cell number, cell type, and tissue structure. Here we review regulation of cell survival in the context of a precisely patterned neural structure: the Drosophila compound eye. Numerous mutations lead to altered differentiation and are frequently accompanied by altered patterns of cell death. We discuss various critical times of normal eye development, highlighting how inappropriate regulation of cell death contributes to different mutant phenotypes associated with genes that specify the entire eye primordia, others that pattern the retina, and those that eliminate extraneous cells to refine the precise pigment cell lattice. Finally, we address how the Drosophila eye may allow identification of additional mechanisms that contribute to the normal integration of cell survival with appropriate events of cellular differentiation.

Related Organizations
Keywords

Neurons, Cell Death, Morphogenesis, Animals, Cell Differentiation, Drosophila, Eye

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    31
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
31
Average
Top 10%
Top 10%