Activation of SRC Kinase and Phosphorylation of Signal Transducer and Activator of Transcription-5 Are Required for Decidual Transformation of Human Endometrial Stromal Cells
doi: 10.1210/en.2007-1217
pmid: 18063684
Activation of SRC Kinase and Phosphorylation of Signal Transducer and Activator of Transcription-5 Are Required for Decidual Transformation of Human Endometrial Stromal Cells
Progesterone induces decidual transformation of estrogen-primed human endometrial stromal cells (hESCs), critical for implantation and maintenance of pregnancy, through activation of many signaling pathways involving protein kinase A and signal transducer and activator of transcription (STAT)-5. We have previously shown that kinase activation of v-src sarcoma (Schmidt-Ruppin A-2) viral oncogene homolog (SRC) kinase is closely associated with decidualization and that SRC is indispensable for maximal decidualization in mice. To address whether SRC kinase activity is essential for decidualization in humans, hESCs were infected with adenoviruses carrying enhanced green fluorescent protein alone (Ad-EGFP), a kinase-inactive dominant-negative mutant (Ad-SRC/K295R), or an inactive autophosphorylation site mutant (Ad-SRC/Y416F). The cells were cultured in the presence of estradiol and progesterone (EP) to induce decidualization and subjected to RT-PCR, immunoblot, and ELISA analyses. Ad-EGFP-infected hESCs exhibited decidual transformation and up-regulation of decidualization markers including IGF binding protein 1 and prolactin in response to 12-d treatment with EP. In contrast, hESCs infected with Ad-SRC/K295R remained morphologically fibroblastoid without production of IGF binding protein 1 and prolactin even after EP treatment. Ad-SRC/Y416F displayed similar but less inhibitory effects on decidualization, compared with Ad-SRC/K295R. During decidualization, STAT5 was phosphorylated on tyrosine 694, a well-known SRC phosphorylation site. Phosphorylation was markedly attenuated by Ad-SRC/K295R but not Ad-EGFP. These results indicate that the SRC-STAT5 pathway is essential for decidualization of hESCs.
- Keio University Japan
Mitogen-Activated Protein Kinase Kinases, Epidermal Growth Factor, Cell Differentiation, Estrogens, Prolactin, Enzyme Activation, Insulin-Like Growth Factor Binding Protein 1, Endometrium, Mice, Decidua, NIH 3T3 Cells, STAT5 Transcription Factor, Animals, Humans, Female, Phosphorylation, Stromal Cells, Cells, Cultured, Progesterone, Signal Transduction
Mitogen-Activated Protein Kinase Kinases, Epidermal Growth Factor, Cell Differentiation, Estrogens, Prolactin, Enzyme Activation, Insulin-Like Growth Factor Binding Protein 1, Endometrium, Mice, Decidua, NIH 3T3 Cells, STAT5 Transcription Factor, Animals, Humans, Female, Phosphorylation, Stromal Cells, Cells, Cultured, Progesterone, Signal Transduction
9 Research products, page 1 of 1
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).24 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
