Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Proceedings of the N...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Proceedings of the National Academy of Sciences
Article . 2010 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

Human ESCRT-III and VPS4 proteins are required for centrosome and spindle maintenance

Authors: Eiji, Morita; Leremy A, Colf; Mary Anne, Karren; Virginie, Sandrin; Christopher K, Rodesch; Wesley I, Sundquist;

Human ESCRT-III and VPS4 proteins are required for centrosome and spindle maintenance

Abstract

The ESCRT pathway helps mediate the final abscission step of cytokinesis in mammals and archaea. In mammals, two early acting proteins of the ESCRT pathway, ALIX and TSG101, are recruited to the midbody through direct interactions with the phosphoprotein CEP55. CEP55 resides at the centrosome through most of the cell cycle but then migrates to the midbody at the start of cytokinesis, suggesting that the ESCRT pathway may also have centrosomal links. Here, we have systematically analyzed the requirements for late-acting mammalian ESCRT-III and VPS4 proteins at different stages of mitosis and cell division. We found that depletion of VPS4A, VPS4B, or any of the 11 different human ESCRT-III (CHMP) proteins inhibited abscission. Remarkably, depletion of individual ESCRT-III and VPS4 proteins also altered centrosome and spindle pole numbers, producing multipolar spindles (most ESCRT-III/VPS4 proteins) or monopolar spindles (CHMP2A or CHMP5) and causing defects in chromosome segregation and nuclear morphology. VPS4 proteins concentrated at spindle poles during mitosis and then at midbodies during cytokinesis, implying that these proteins function directly at both sites. We conclude that ESCRT-III/VPS4 proteins function at centrosomes to help regulate their maintenance or proliferation and then at midbodies during abscission, thereby helping ensure the ordered progression through the different stages of cell division.

Related Organizations
Keywords

Adenosine Triphosphatases, Centrosome, Vacuolar Proton-Translocating ATPases, Time Factors, Endosomal Sorting Complexes Required for Transport, Cell Survival, Mitosis, DNA, Spindle Apparatus, Protein Transport, Imaging, Three-Dimensional, Biomarkers, Tumor, ATPases Associated with Diverse Cellular Activities, Humans, Cytokinesis, HeLa Cells

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    191
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
191
Top 1%
Top 10%
Top 1%
bronze