Developmental arrest of Drosophila survival motor neuron (Smn) mutants accounts for differences in expression of minor intron-containing genes
Developmental arrest of Drosophila survival motor neuron (Smn) mutants accounts for differences in expression of minor intron-containing genes
Reduced levels of survival motor neuron (SMN) protein lead to a neuromuscular disease called spinal muscular atrophy (SMA). Animal models of SMA recapitulate many aspects of the human disease, including locomotion and viability defects, but have thus far failed to uncover the causative link between a lack of SMN protein and neuromuscular dysfunction. While SMN is known to assemble small nuclear ribonucleoproteins (snRNPs) that catalyze pre-mRNA splicing, it remains unclear whether disruptions in splicing are etiologic for SMA. To investigate this issue, we carried out RNA deep-sequencing (RNA-seq) on age-matched Drosophila Smn-null and wild-type larvae. Comparison of genome-wide mRNA expression profiles with publicly available data sets revealed the timing of a developmental arrest in the Smn mutants. Furthermore, genome-wide differences in splicing between wild-type and Smn animals did not correlate with changes in mRNA levels. Specifically, we found that mRNA levels of genes that contain minor introns vary more over developmental time than they do between wild-type and Smn mutants. An analysis of reads mapping to minor-class intron–exon junctions revealed only small changes in the splicing of minor introns in Smn larvae, within the normal fluctuations that occur throughout development. In contrast, Smn mutants displayed a prominent increase in levels of stress-responsive transcripts, indicating a systemic response to the developmental arrest induced by loss of SMN protein. These findings not only provide important mechanistic insight into the developmental arrest displayed by Smn mutants, but also argue against a minor-intron-dependent etiology for SMA.
- Department of Biology University of North Carolina United States
- University of North Carolina at Greensboro United States
- UNC Lineberger Comprehensive Cancer Center United States
- University of North Carolina at Chapel Hill United States
- UNIVERSITY OF NORTH CAROLINA CHAPEL HILL
Base Sequence, Sequence Analysis, RNA, Gene Expression Profiling, RNA Splicing, RNA-Binding Proteins, Articles, Ribonucleoproteins, Small Nuclear, Muscular Atrophy, Spinal, Drosophila melanogaster, Larva, RNA Precursors, Animals, Drosophila Proteins, Intercellular Signaling Peptides and Proteins, RNA, Messenger
Base Sequence, Sequence Analysis, RNA, Gene Expression Profiling, RNA Splicing, RNA-Binding Proteins, Articles, Ribonucleoproteins, Small Nuclear, Muscular Atrophy, Spinal, Drosophila melanogaster, Larva, RNA Precursors, Animals, Drosophila Proteins, Intercellular Signaling Peptides and Proteins, RNA, Messenger
101 Research products, page 1 of 11
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2019IsAmongTopNSimilarDocuments
- 2017IsRelatedTo
- 2017IsRelatedTo
chevron_left - 1
- 2
- 3
- 4
- 5
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).45 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
