Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Molecular Biology an...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Molecular Biology and Evolution
Article . 1996 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

Molecular phylogeny and genome evolution in the Drosophila virilis species group: duplications of the alcohol dehydrogenase gene

Authors: D I, Nurminsky; E N, Moriyama; E R, Lozovskaya; D L, Hartl;

Molecular phylogeny and genome evolution in the Drosophila virilis species group: duplications of the alcohol dehydrogenase gene

Abstract

Drosophila virilis is a prominent reference species for comparison with Drosophila melanogaster in regard to patterns and mechanisms of molecular and genomic evolution. Sequences were determined for 11 Adh genes from 8 species of the D. virilis species group, including species from both the virilis phylad and the montana subphylad. The genome of D. virilis contains a 6-kb duplication that includes the entire Adh coding region. The pattern of sequence identity within the duplication strongly suggests a recent gene-conversion event bordered by 36-bp indels. As in other Drosophila, the amino-acid coding region of Adh is encoded by three exons interrupted by two short introns. The promoter region includes 16 blocks of sequence that are well conserved in D. virilis, Drosophila hydei, and D. melanogaster. The developmental profile of Adh transcription suggests a distal/proximal promoter switch analogous to that in D. melanogaster. Duplicate Adh genes were also found in Drosophila montana and Drosophila lacicola, which apparently originated independently of that in D. virilis. The Adh genes in all species of the D. virilis group have among the lowest codon bias of any Adh genes so far reported in the genus Drosophila. Taking the low codon bias into account, we estimate the time of divergence between the virilis and montana clades as 9.0 +/- 0.7 Mya and the approximate time of divergence of D. virilis from other members of the virilis phylad as 2.6 +/- 0.4 Mya. The region of the D. virilis genome containing Adh, as well as the chromosome as a whole, gives evidence of extensive rearrangements relative to the genome of D. melanogaster.

Related Organizations
Keywords

Evolution, Molecular, Genome, Base Sequence, Molecular Sequence Data, Alcohol Dehydrogenase, Animals, Drosophila, Amino Acid Sequence, Sequence Alignment, Phylogeny

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    90
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
90
Average
Top 10%
Top 10%
gold