Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Biochimica et Biophy...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Biochimica et Biophysica Acta (BBA) - Molecular Cell Research
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biochimica et Biophysica Acta (BBA) - Molecular Cell Research
Article . 2009 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
versions View all 4 versions

Membrane localization of RasGRP1 is controlled by an EF-hand, and by the GEF domain

Authors: Robert J. Kay; Robert J. Kay; Bari Zahedi; R. Goulding; R. Goulding; Ada Woo; Nadine Beaulieu; +2 Authors

Membrane localization of RasGRP1 is controlled by an EF-hand, and by the GEF domain

Abstract

RasGRP1 is an exchange factor for membrane-localized Ras GTPases. Activation of RasGRP1 requires its translocation to membranes, which can be directly mediated by either its PT or C1 domains. RasGRP1 also has a pair of EF-hands which have been proposed to regulate RasGRP1 by sensing receptor-induced calcium fluxes. We determined that one of these EF-hands, EF1, is required for receptor-induced translocation of RasGRP1 to the plasma membrane in B cell lines. EF1 enables plasma membrane targeting of RasGRP1 by counteracting the SuPT domain, a negative regulator of the PT domain. Contrary to expectations, EF1-mediated translocation of RasGRP1 does not involve antigen receptor-induced intracellular calcium flux. Instead, alternative splicing affecting EF1 serves to modulate RasGRP1 localization. Excision of an exon encoding part of EF1 selectively disables PT domain-mediated plasma membrane targeting of RasGRP1, without affecting C1 domain-mediated localization to endomembranes. While EF1 specifically controls PT-mediated plasma membrane targeting, the Ras binding site in the catalytic GEF domain of RasGRP1 is required for both PT-mediated plasma membrane targeting and C1-mediated localization to endomembranes. Positive feedback between its GEF domain and membrane-binding domains could be important for full activation of RasGRP1, with occupation of the Ras binding sites in the GEF domain resulting in functional liberation of the PT and C1 domains, and membrane binding by these domains serving to maintain the Ras-GEF interaction.

Keywords

Binding Sites, Cell Membrane, Cell Biology, EF-hand, Membrane localization, Exchange factor, Alternative Splicing, Mice, Protein Transport, Microscopy, Fluorescence, Antigen receptor, NIH 3T3 Cells, Animals, Guanine Nucleotide Exchange Factors, Ras GTPase, ras Guanine Nucleotide Exchange Factors, EF Hand Motifs, C1 domain, Molecular Biology, Chickens

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    19
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
19
Top 10%
Average
Top 10%
hybrid