Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Developmental Biolog...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Developmental Biology
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Developmental Biology
Article . 1999
License: Elsevier Non-Commercial
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Developmental Biology
Article . 1999 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
versions View all 4 versions

Dystonin-Deficient Mice Exhibit an Intrinsic Muscle Weakness and an Instability of Skeletal Muscle Cytoarchitecture

Authors: Dalpé, Gratien; Mathieu, Martine; Comtois, Alain; Zhu, Ercheng; Wasiak, Sylwia; De Repentigny, Yves; Leclerc, Nicole; +1 Authors

Dystonin-Deficient Mice Exhibit an Intrinsic Muscle Weakness and an Instability of Skeletal Muscle Cytoarchitecture

Abstract

Dystonia musculorum (dt) was originally described as a hereditary sensory neurodegeneration syndrome of the mouse. The gene defective in dt encodes a cytoskeletal linker protein, dystonin, that is essential for maintaining neuronal cytoskeletal integrity. In addition to the nervous system, dystonin is expressed in a variety of other tissues, including muscle. We now show that dystonin cross-links actin and desmin filaments and that its levels are increased during myogenesis, coinciding with the progressive reorganization of the intermediate filament network. A disorganization of cytoarchitecture in skeletal muscle from dt/dt mice was observed in ultrastructural studies. Myoblasts from dt/dt mice fused to form myotubes in culture; however, terminally differentiated myotubes contained incompletely assembled myofibrils. Another feature observed in dt/dt myotubes in culture and in skeletal muscle in situ was an accumulation and abnormal distribution of mitochondria. The diaphragm muscle from dt/dt mice was weak in isometric contractility measurements in vitro and was susceptible to contraction-induced sarcolemmal damage. Altogether, our data indicate that dystonin is a cross-linker of actin and desmin filaments in muscle and that it is essential for establishing and maintaining proper cytoarchitecture in mature muscle.

Keywords

actin binding, muscle, Dystonin, Recombinant Fusion Proteins, Diaphragm, desmin, Nerve Tissue Proteins, Cell Line, Desmin, dystonia musculorum, Mice, Isometric Contraction, Animals, Muscle, Skeletal, Molecular Biology, mouse, intermediate filament, Reverse Transcriptase Polymerase Chain Reaction, Gene Expression Regulation, Developmental, cytoskeleton, linker protein, Cell Differentiation, Neurodegenerative Diseases, Cell Biology, Actins, Mice, Mutant Strains, Cytoskeletal Proteins, Cross-Linking Reagents, dystonin/Bpag1, Carrier Proteins, Developmental Biology

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    65
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
65
Top 10%
Top 10%
Top 10%
hybrid