Retinoic Acid Utilizes CREB and USF1 in a Transcriptional Feed-Forward Loop in Order To Stimulate MKP1 Expression in Human Immunodeficiency Virus-Infected Podocytes
Retinoic Acid Utilizes CREB and USF1 in a Transcriptional Feed-Forward Loop in Order To Stimulate MKP1 Expression in Human Immunodeficiency Virus-Infected Podocytes
Nef-induced podocyte proliferation and dedifferentiation via mitogen-activated protein kinase 1,2 (MAPK1,2) activation plays a role in human immunodeficiency virus (HIV) nephropathy pathogenesis. All-trans retinoic acid (atRA) reverses the HIV-induced podocyte phenotype by activating cyclic AMP (cAMP)/protein kinase A (PKA) and inhibiting MAPK1,2. Here we show that atRA, through cAMP and PKA, triggers a feed-forward loop involving CREB and USF1 to induce biphasic stimulation of MKP1. atRA stimulated CREB and USF1 binding to the MKP1 gene promoter, as shown by gel shifting and chromatin immunoprecipitation assays. CREB directly mediated the early phase of atRA-induced MKP1 stimulation; whereas the later phase was mediated by CREB indirectly through induction of USF1. These findings were confirmed by a reporter gene assay using the MKP1 promoter with mutation of CRE or Ebox binding sites. Consistent with these findings, the biological effects of atRA on podocytes were inhibited by silencing either MKP1, CREB, or USF1 with small interfering RNA. atRA also induced CREB phosphorylation and MKP1 expression and reduced MAPK1,2 phosphorylation in kidneys of HIV type 1-infected transgenic mice. We conclude that atRA induces sustained activation of MKP1 to suppress Nef-induced activation of the Src-MAPK1,2 pathway, thus returning the podocyte to a more differentiated state. The mechanism involves a feed-forward loop where activation of one transcription factor (TF) (CREB) leads to induction of a second TF (USF1).
- Children's Research Institute (CRI) United States
- New York/New Jersey VA Health Care Network United States
- James J Peters VA Medical Center United States
- Children's Mercy Hospital United States
- Icahn School of Medicine at Mount Sinai United States
Mitogen-Activated Protein Kinase 1, Transcription, Genetic, Podocytes, Dual Specificity Phosphatase 1, HIV Infections, Mice, Transgenic, Tretinoin, Cyclic AMP-Dependent Protein Kinases, Mice, Gene Expression Regulation, Genes, Reporter, Cyclic AMP, HIV-1, Animals, Humans, RNA, Small Interfering, Cyclic AMP Response Element-Binding Protein, Promoter Regions, Genetic, Cells, Cultured, Signal Transduction
Mitogen-Activated Protein Kinase 1, Transcription, Genetic, Podocytes, Dual Specificity Phosphatase 1, HIV Infections, Mice, Transgenic, Tretinoin, Cyclic AMP-Dependent Protein Kinases, Mice, Gene Expression Regulation, Genes, Reporter, Cyclic AMP, HIV-1, Animals, Humans, RNA, Small Interfering, Cyclic AMP Response Element-Binding Protein, Promoter Regions, Genetic, Cells, Cultured, Signal Transduction
18 Research products, page 1 of 2
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
chevron_left - 1
- 2
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).44 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
